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There are two main formulations for panel methods based on Green’s formula: Dirichlet and Neumann methods. 

In a previous work a rigorous analytical study of the global error of Dirichlet method was performed. In this work 

an analytical study of the global error is performed for the other formulation: Neumann method. The analysis is 

performed for a wide variety of body shapes and different panel geometries to fully understand their effect on 

the convergence of the method. In particular, we study the global error associated with panel methods applied 

to thin or thick bodies with purely convex parts or with both convex and concave parts, and with smooth or 

non-smooth boundaries. In order to validate the analytical results, both numerical and analytical solutions for 

different body geometries have been considered to compare the actual and predicted errors in each case. Finally, 

a comparison of the error order between both methods, Dirichlet and Neumann, has also been performed for 

different configurations. 

1. Introduction 

Computational Fluid Models (CFDs) are widespread used in engi- 

neering practices, and especially in the field of aeronautics. However, 

they require long calculation times and the results are not always reli- 

able, so inputs from other methods are often needed, as the methods for 

solving potential fluid flows. 

The potential methods are valid only if the viscous effects are neg- 

ligible or if they are reduced to small areas of the fluid field. In case 

of incompressible flows the velocity potential must satisfy the Laplace’s 

equation. In case of linearised compressible subsonic flows, the velocity 

potential must satisfy the Prandtl–Glauert equation. In this last case, and 

by applying an easy transformation, the Prandtl–Glauert equation can 

be converted in the Laplace’s equation, so that solving this last equation 

is enough to solve both kind of movements. The potential methods al- 

low one to calculate numerically the solution of any given problem as 

long as the velocity potential satisfies the Laplace’s equation. 

The importance of the Laplace’s equation in the aerodynamics (and 

many other scientific fields) had made the researchers to dedicate a 

great effort in developing analytical and numerical methods to solve 

this equation. One of the most developed potential methods is the panel 

method or boundary element method (BEM) [1,2] , which reduce the 

problem of finding the velocity potential for the entire fluid to the cal- 

culation of this potential on the surface of the body itself. Thus, the 
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dimension of the problem is reduced from three to two (or, in the case 

of two-dimensional flows, from two to one) making BEMs very attractive 

for their low computational cost compared with non-potential methods. 

Since the pioneering work of Hess and Smith there have been numerous 

publications and many numerical codes based on panel methods [3–14] ; 

among these we emphasize the reviews of Hess [9] , Erickson [10] and 

the book of Katz and Plotkin [12] . Boundary element methods are an 

active field of study, especially within the engineering community, with 

new applications being developed rapidly. 

The panel method based on Green’s formula was first introduced in 

the work of Morino and Kuo [4] , in which the primary unknown was 

the velocity potential. There are two main formulations both based on 

Green’s formula: Dirichlet and Neumann [12] .The Dirichlet formulation 

solves the Laplace equation numerically and provides the velocity po- 

tential while with the Neumann formulation, only differences of poten- 

tial are obtained. A lot of studies have addressed the question of error 

in these methods [15–21] . However, to the best of our knowledge, the 

first work that has tackled a rigorous analytical study of the global error 

of Dirichlet method is [22] . The analysis in that work was applied to 

thin or thick bodies, with purely convex parts or with both convex and 

concave parts, and with smooth or non-smooth boundaries. 

A formal analytical estimation of the global error assumed when em- 

ploying the Neumann formulation to solve the Green’s integral equation 

is then the logical step forward. The solution of this system of equations 
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Fig. 1. Fluid domain in Green’s integral equation. Sketch of the body and asso- 

ciated surfaces: body surface S B , wake surface S W 

and a surface at infinity S ∞. 

V ∞ and angle of attack, 𝛼, representation. 

allows to obtain the differences of velocity potential values in a dis- 

cretized domain derived from an obstacle embedded in a fluid domain. 

This work presents a formal analytical and numerical analysis of 

the asymptotic global error in panel methods when applied to a Neu- 

mann formulation for different body geometries. The work is orga- 

nized as follows. In Section 2 a brief description of panel methods is 

given. In Section 3 the global error analysis is performed analytically. In 

Section 4 the details of the error estimation are presented. Section 5 con- 

siders the numerical and analytical solutions for different body geome- 

tries in order to compare the actual and predicted errors in each case. In 

Section 6 a comparison between the error order of both formulations, 

Neumann and Dirichlet, is performed. Finally, in Section 7 the main 

conclusions are given. 

2. Brief description of the panel method 

In a previous work [22] the Green’s integral equation: 

Φ( 𝒑 ) = ∫𝑆 𝐵 

𝜕Φ
𝜕𝑛 

Φ𝑚 𝑑𝑠 − ∫𝑆 𝐵 

Φ▿▿▿Φ𝑚 ⋅ 𝒏 𝑑𝑠 

− (Φ+ − Φ− ) ∫𝑆 𝑊 

▿▿▿Φ𝑚 ⋅ 𝒏 𝑑𝑠 + Φ∞, (1) 

was used to obtain the velocity potential Φ around a body of known 

shape submerged in a potential flow at any point p in space. This po- 

tential is considered to be caused by a distribution, on the surface of 

the body S B , of point sources of intensity 𝜕 Φ/ 𝜕 n and doublets of in- 

tensity Φ oriented along axes n , and by a distribution, along the wake 

S W 

, of doublets of intensity Φ+ − Φ− with axis of orientation n . Fig. 1 

shows the body and the relevant surfaces; S B is the body surface, S W 

is a surface discontinuity of the velocity potential with two wet faces, 

also known as wake, and that connects S ∞ with S B , S ∞ is the surface 

of the far field flow. The normal vector n on the body is oriented out- 

ward while it points upward along the wake, inward along the surface 

at infinity. Φm 

is the velocity potential produced at a point p by a point 

source of unit strength located on ds , ▿▿▿Φ𝑚 ⋅ 𝒏 is the velocity potential at 

a point p produced by a doublet of unit strength located on ds (at the 

body or at the discontinuity surface) and with its axis oriented along 

− 𝒏 , Φ+ is the velocity potential on the upper side of the discontinuity 

surface S W 

, and Φ− on the lower one, and the final term in Eq. (1) is 

the potential of the stationary flow far from the body, evaluated at p : 

Φ∞ = 𝑈 ∞( 𝑥 cos 𝛼 + 𝑦 sin 𝛼) , where 𝑈 ∞ = 

||𝑽 ∞|| and V ∞ is the fluid veloc- 

ity at infinity, 𝛼 is the angle between the incident flow and a reference 

line (angle of attack), and x and y are the coordinates of the point p in 

a fixed reference frame. 

Imposing a vanishing normal velocity component on the boundary 

of the body, 

∇Φ ⋅ 𝒏 = 𝜕 Φ∕ 𝜕 𝑛 = 0 , (2) 

and replacing this condition on Eq. (1) , it becomes: 

Φ( 𝒑 ) = − ∫𝑆 𝐵 

Φ▿▿▿Φ𝑚 ⋅ 𝒏 𝑑𝑠 − (Φ+ − Φ− ) ∫𝑆 𝑊 

▿▿▿Φ𝑚 ⋅ 𝒏 𝑑𝑠 + Φ∞. (3) 

Fig. 2. Discretization of the body surface. 

Eq. (3) represents the velocity potential Φ at a point p of a distribution of 

doublets on both the surface of the body and the discontinuity surface, 

with intensities Φ and Φ+ − Φ− respectively and axis n . Taking the point 

p to be on the surface of the body reduces the problem to an integral 

equation for the unknown velocity potential on the surface. 

Eq. (3) can be written as 

Φ( 𝒑 ) = 

1 
2 𝜋 ∫𝑆 𝐵 

Φ( 𝒔 )( 𝒑 − 𝒔 ) ⋅ 𝒏 |𝒑 − 𝒔 |2 𝑑𝑠 + 

Γ
2 𝜋 ∫𝑆 𝑊 

( 𝒑 − 𝝃𝑤 ) ⋅ 𝒏 𝑤 |𝒑 − 𝝃𝑤 |2 𝑑𝜉𝑤 + Φ∞( 𝒑 ) , 

(4) 

where Φm 

and ▿▿▿Φ𝑚 ⋅ 𝒏 have been replaced by their mathematical expres- 

sion. In the first integral, the variable of integration, s , is the arc length 

parameter along the body surface, 𝒔 = 𝒔 ( 𝑠 ) is a point on the body surface 

S B , and 𝒏 = 𝒏 ( 𝑠 ) is the (unit) normal vector directed outward from that 

point. In the second integral the variable of integration is 𝜉w , measur- 

ing distance along the wake panel S W 

, while 𝝃𝑤 = 𝝃𝑤 ( 𝜉𝑤 ) is a point on 

the wake panel and n w is a unit normal vector directed upwards. The 

prefactor Γ = Φ+ − Φ− denotes the circulation around the body. 

Here we derive an estimate for the expected numerical error upon 

solving Eq. (4) with the lower order panel method. In what follows, 

the geometry of the body will be approximated with a collection of flat 

panels 𝓁 𝑖 , 𝑖 = 1 ..𝑁 of length l i . We assume that the intensity of the dou- 

blet distribution is constant on each individual panel and that all panels 

are of comparable size, i.e, with a characteristic lengthscale 𝑙 = 𝑂(1∕ 𝑁) ; 
hereafter, we use the Landau notation “O ( · ) ” for order of magnitude. 

The discretization of the body surface and the wake are illustrated in 

Fig. 2 . 

Enumeration of the panels begins at the point of attachment of the 

wake, with panel number 1, and continues clockwise around the body, 

ultimately reaching the starting point again after panel N (this time from 

above the wake panel). As illustrated in Fig. 2 , the endpoints of these 

panels (which lie on the body surface) similarly divide the true body 

surface into N (curved) segments L i . We may thus decompose the first 

integral term in Eq. (4) to get 

Φ( 𝒑 ) = 

1 
2 𝜋

𝑁 ∑
𝑖 =1 

∫𝐿 𝑖 

Φ( 𝒔 𝑖 )( 𝒑 − 𝒔 𝑖 ) ⋅ 𝒏 |𝒑 − 𝒔 𝑖 |2 𝑑 𝑠 𝑖 + 

Γ
2 𝜋 ∫𝑆 𝑊 

( 𝒑 − 𝝃𝑤 ) ⋅ 𝒏 𝑤 |𝒑 − 𝝃𝑤 |2 𝑑 𝜉𝑤 + Φ∞( 𝒑 ) , 

(5) 

where we use the subscript i to indicate that s i or s i is restricted to the 

curved segment L i . 

The “numerical ” potential Φn ( p ), is calculated by assuming a con- 

stant doublet distribution along each of the N panels 𝓁 i . This latter po- 

tential can be written as 

Φ𝑛 ( 𝒑 ) = 

1 
2 𝜋

𝑁 ∑
𝑖 =1 

Φ𝑛 
𝑖 ∫𝓁 𝑖 

( 𝒑 − 𝝃𝑖 ) ⋅ 𝒏 𝑖 |𝒑 − 𝝃𝑖 |2 𝑑 𝜉𝑖 + 

Γ𝑛 

2 𝜋 ∫𝑆 𝑊 

( 𝒑 − 𝝃𝑤 ) ⋅ 𝒏 𝑤 |𝒑 − 𝝃𝑤 |2 𝑑 𝜉𝑤 + Φ∞( 𝒑 ) , 

(6) 

where 𝝃i is a point on panel i , with 𝜉i measuring distance along it (see 

Appendix A.1 in [22] for more detail), n i is an outward unit normal to 

this panel, and Γn is the numerically calculated circulation. The dou- 

blet strengths (potentials) Φ𝑛 
𝑖 

are determined by evaluating Eq. (6) at N 

collocation points, x i , one located on each of the N panels 𝓁 i , 

Φ𝑛 
𝑖 
= Φ𝑛 ( 𝒙 𝑖 ) = 

1 
2 𝜋

𝑁 ∑
𝑗=1 

Φ𝑛 
𝑗 ∫𝓁 𝑗 

( 𝒙 𝑖 − 𝝃𝑗 ) ⋅ 𝒏 𝑗 |𝒙 𝑖 − 𝝃𝑗 |2 𝑑𝜉𝑗 

+ 

Γ𝑛 

2 𝜋 ∫𝑆 𝑊 

( 𝒙 𝑖 − 𝝃𝑤 ) ⋅ 𝒏 𝑤 |𝒙 𝑖 − 𝝃𝑤 |2 𝑑𝜉𝑤 + Φ∞( 𝒙 𝑖 ) , (7) 
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