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a b s t r a c t 

This paper presents a boundary element analysis of linear elastic fields in a layered halfspace whose material 

interface planes are not parallel to its horizontal boundary surface. This boundary element analysis uses the 

generalized Kelvin solution in a multilayered elastic solid (or the so-called Yue’s solution) for taking into account 

the non-horizontally layered structures. It also adopts the infinite boundary elements for evaluating the influence 

of a far-field region. It further adopts both the discontinuous finite and infinite boundary elements to discretize the 

boundary surface around the strike lines of the inclined material interfaces. It uses Kutt’s numerical quadrature 

to evaluate the strongly singular integral in the discretized boundary integral equation. Numerical examples are 

presented to illustrate the effects of the non-horizontally layered materials to the displacements and stresses 

induced by the tractions on the horizontal boundary surface. Two non-horizontally layered halfspace models are 

used for numerical analysis and illustrations. Numerical results show that across the material interface, the elastic 

displacements are non-smoothly continuous to different degrees and some stress components can have very high 

values at and around the interface planes, which can be important to tensile or shear failure in non-homogeneous 

materials. 

1. Introduction 

1.1. Horizontally layered halfspace model 

Layered solid materials widely exist in nature or man-made struc- 
tures. Their responses to external loadings before failure can be modeled 
with the responses of elastic halfspace model subject to the same exter- 
nal loading. The elastic halfspace model can compose of the layered 
elastic materials with the same mechanical properties and geometries 
of the actual layered solid materials. The interfaces of the layered solid 
materials may or may not be parallel to their boundary surfaces. Many 
investigations have been done for the elastic responses of the horizon- 
tally layered halfspaces subject to tractions or other types of loading 
conditions by many researchers since 1940s (e.g., [1–7] ). A relatively 
complete list of relevant publications can be found in the recent publi- 
cations by Yue [8,9] . 

1.2. Non-horizontally layered halfspace model 

As shown in Fig. 1 , this paper examines the elastic responses of an 
elastic halfspace with non-horizontally layered solid materials due to the 
action of tractions at the horizontal boundary surface. There is a very 
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limited investigation on the elastic responses of such non-horizontally 
layered halfspaces subject to tractions. Two examples of relevant studies 
are given by Almeida Pereira and Parreira [10] and Moser et al. [11] , 
respectively. Due to its importance in science and engineering and its 
difficulties in analytical or numerical formulations, this paper aims to 
develop a novel boundary element method to calculate the elastic re- 
sponses of the displacement and stress fields with high efficiency and 
accuracy. 

1.3. Classical boundary element method and issues 

The classical boundary element method (BEM) is ideally suited for 
the analysis of elastic solid materials occupying either full-space or halfs- 
pace because BEM only needs to discretize the external boundary surface 
and automatically satisfies the conditions at the infinity. The classical 
Kelvin’s solution is commonly used as the fundamental singular solution 
in the classical BEM. When it is applied to a layered solid as shown in 
Fig. 1 , it needs to divide the layered solid into many homogeneous do- 
mains. Furthermore, it needs to discretize the internal interfaces of the 
layered materials so that the continuity conditions at the internal inter- 
faces can be formulated numerically together with those at the external 
boundary surfaces. For example, Almeida Pereira and Parreira [10] and 
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Fig. 1. A layered halfspace subject to distributed loadings on the boundary 

surface. 

Moser et al. [11] adopted this multi-region method of BEMs and ana- 
lyzed the elastic responses of a halfspace with two non-horizontal layers 
subject to tractions. As the number of layers increases, however, the ef- 
ficiency and accuracy of the classical BEM decrease significantly. This 
multi-region method also has the disadvantage in effective and accu- 
rate calculations of the elastic fields across internal material interfaces. 
Thirdly, the fundamental singular solutions, used as the kernel func- 
tions, in the classical BEMs vary rapidly if an internal point is very close 
to the elements located at material interfaces. 

1.4. Aim and approach of this study 

In this paper, a single-region BEM is developed and presented for the 
analysis of the elastic responses of a non-horizontally layered halfspace 
subject to tractions ( Fig. 1 ). The generalized Kelvin solution in a multi- 
layered elastic solid given by Yue [12] is used to eliminate the discretiza- 
tion task at the internal interfaces of layered materials. Furthermore, the 
infinite boundary element technique proposed by Moser et al. [11] is 
used to take into account the influence of a far-field region because of its 
straightforward implementation. Other infinite boundary element tech- 
niques can be found in the publications by Waston [13] , Beer et al. [14] , 
Beer and Waston [15] , Zhang et al. [16] , Liu and Farris [17] , Almeida 
Pereira and Parreira [10] , Davies and Bu [18] , Bu [19] , Gao and Davies 
[20] , Moser et al. [11] , Salvadori [21] , Liang and Liew [22] and Ribeiro 
and Paiva [23] . Thirdly, the discontinuous boundary element technique 
is adopted to deal with the step-discontinuity of material properties at 
the interface strike line on the horizontal boundary surface of the non- 
horizontally layered halfspace. Fourthly, special attentions are given to 
various singular integrals involved in the discretized boundary integral 
equations. The proposed BEM is applied to specifically solving the elas- 
tic response of a halfspace with two or three non-horizontal layers under 
a square footing loading on the horizontal boundary surface. Numeri- 
cal results show the influence of non-horizontally layered materials to 
the elastic displacement and stress fields induced by the normal footing 
tractions on the horizontal boundary surface. 

2. The governing equations for BEM in non-horizontally layered 

halfspace 

Fig. 2 shows the horizontally oriented boundary surface of the non- 
horizontally layered halfspace model. The interface strike line repre- 
sents an intersection line of an internal interface plane of any two fully 
contacted dissimilar material layers with the horizontal boundary sur- 
face. The boundary surface is divided into two parts S F and S I . They 
represent a core region around the traction area and a far-field region 
beyond the traction area, respectively. Accordingly, using the gener- 
alized Kelvin solution of a multilayered solid occupying the full-space 

Fig. 2. Definition of S F and S I on the boundary surface of a non-horizontally 

layered halfspace. 

[12] , the boundary integral equations for the non-horizontally layered 
halfspace without body forces can be expressed as 

𝑐 𝑖𝑗 ( 𝑃 ) 𝑢 𝑗 ( 𝑃 ) + ∫𝑆 𝐹 + 𝑆 𝐼 
𝑡 𝑌 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑢 𝑗 ( 𝑄 ) 𝑑𝑆 ( 𝑄 ) = ∫𝑆 𝐹 + 𝑆 𝐼 

𝑢 𝑌 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑡 𝑗 ( 𝑄 ) 𝑑𝑆 ( 𝑄 ) 

(1) 

where P and Q are, respectively, the field and source points; t j and u j 
are, respectively, tractions and displacements; 𝑡 𝑌 

𝑖𝑗 
and 𝑢 𝑌 

𝑖𝑗 
are, respec- 

tively, the kernel functions of the tractions and displacements of the 
generalized Kelvin solution. 

The free term c ij ( P ) in Eq. (1) depends only upon the asymmetric 
behavior of the singular terms of the generalized Kelvin solution and 
the local geometry of the boundary at the point P . In using the funda- 
mental solution of a layered space, c ij ( P ) = 0.5 𝛿ij for the point P located 
on a smooth boundary and not at the material interface [24] . When the 
point P is located at the strike line of the material interface on the hor- 
izontal boundary surface, there is no closed-form expression for c ij ( P ) 
available in the open literature. So, instead, the discontinuous bound- 
ary element technique is adopted for resolving this task. Its details are 
given in Section 4.1 . 

After obtaining the displacements and tractions on the boundary, 
the displacements at any internal point p can be determined by using 
the displacement integral equations as follows 

𝑢 𝑖 ( 𝑝 ) + ∫𝑆 𝐹 + 𝑆 𝐼 
𝑡 𝑌 
𝑖𝑗 
( 𝑝 , 𝑄 ) 𝑢 𝑗 ( 𝑄 ) 𝑑𝑆 ( 𝑄 ) = ∫𝑆 𝐹 + 𝑆 𝐼 

𝑢 𝑌 
𝑖𝑗 
( 𝑝 , 𝑄 ) 𝑡 𝑗 ( 𝑄 ) 𝑑𝑆 ( 𝑄 ) (2) 

By using Eq. (2) , the strain–displacement equations and the consti- 
tutive equations, the stresses at any internal point p can be expressed as 

𝜎𝑖𝑗 ( 𝑝 ) = ∫𝑆 𝐹 + 𝑆 𝐼 
𝑈 

𝑌 
𝑖𝑗𝑘 

( 𝑝 , 𝑄 ) 𝑡 𝑘 ( 𝑄 ) 𝑑𝑆 ( 𝑄 ) − ∫𝑆 𝐹 + 𝑆 𝐼 
𝑇 𝑌 
𝑖𝑗𝑘 

( 𝑝 , 𝑄 ) 𝑢 𝑘 ( 𝑄 ) 𝑑𝑆 ( 𝑄 ) (3) 

where 𝑈 

𝑌 
𝑖𝑗𝑘 

and 𝑇 𝑌 
𝑖𝑗𝑘 

are the new kernel functions obtained from the 
displacements and stresses of the generalized Kelvin solution in a lay- 
ered solid of full-space extent and the relative functions are presented 
in Appendix A . 

3. The generalized Kelvin solution in non-horizontally layered 

full-space 

3.1. Two Cartesian coordinate systems and relationship 

As shown in Figs. 1 and 2 , the boundary integral equations are 
established in the Cartesian coordinate system Oxyz , where the non- 
horizontally layered material interface planes have a dip angle 𝜃 to the 
horizontal Oxy plane. On the other hand, another Cartesian coordinate 
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