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a b s t r a c t 

The cuckoo search (CS) algorithm combined with Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (CS-BFGS) 

is proposed to identify time-dependent boundary conditions for 2-D transient heat conduction problems in func- 

tionally gradient materials. Firstly the dual reciprocity boundary element method (DRBEM) is used to solve the 

direct problem. Then taking the unknown boundary conditions as a polynomial function of coordinates with 

time-dependent coefficients, the CS-BFGS is applied to obtain the unknown coefficients of the polynomial. As a 

result, the transient boundary conditions are evaluated. The convergence speed of the CS-BFGS algorithm is faster 

than the CS algorithm. What’s more, the effect of the polynomial degree is discussed. As the polynomial degree 

increases, the inverse results are more accurate but the iterative number and computation time also increase. 

Finally, the influences of the position and number of measurement points, and random errors on the inverse 

results are investigated. With the measurement points closer to the boundary, with the increase of measurement 

point number and with the decrease of measurement errors, the results are more accurate. 

1. Introduction 

The direct heat conduction problem is concerned with the determi- 

nation of temperature distribution in a domain when boundary condi- 

tions, initial conditions, thermo-properties, heat sources and the geome- 

try of the domain are specified. In contrast, the inverse heat conduction 

problem involves the determination of boundary conditions, thermo- 

properties, heat sources, or geometry from the measured temperature 

information in the domain [1–4] . 

The boundary element method (BEM) is an important alternative 

technique for solving the heat conduction problem [5–7] . Compared 

with other numerical methods, the BEM has advantages of small amount 

of calculation and high precision. For non-linear, non-homogeneous and 

transient problems, the domain integral occurs in the resulting integral 

equations, which makes the BEM lose its advantage of boundary only 

discretization. The dual reciprocity method (DRM) can transform the 

domain integral into the boundary integral [8] . The method combining 

the DRM with the BEM is called the dual reciprocity boundary element 

method (DRBEM). Up to now, the DRBEM has been used in many fields 

[9–11] . 

For the inverse boundary condition problems, many numerical meth- 

ods have been proposed. Beck [12,13] estimated heat flux by the 
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finite difference method. Busby and Trujillo [14] determined the un- 

known heat flux by the method of dynamic programming. Falk and 

Monk [15] studied the Cauchy problem for elliptic equations by the 

minimal energy technique. Ingham et al. [16,17] investigated the lin- 

ear and nonlinear inverse heat transfer problems by the minimal energy 

technique. Lesnic et al. [18] and Mera et al. [19] solved the Cauchy 

problem for the steady-state heat conduction equation by the BEM. The 

DRBEM combined with the sequential function specification method 

was used to identify the unknown boundary heat flux by Behbahani-Nia 

and Kowsary [20] . Marin used the method of fundamental solutions to 

deal with the inverse boundary condition problem for steady-state heat 

transfer by the Tikhonov regularization [21] and singular value decom- 

position (SVD) [22] . Onyango et al. [23] employed the BEM to solve 

the missing terms involving the boundary temperature, heat flux and 

law for the boundary conditions. Chen [24] applied the window func- 

tion to regularize the divergent problem in the Laplace equation with 

overspecified boundary conditions in an infinite strip region. Hon and 

Wei [25,26] developed a new meshless and integration-free numerical 

scheme combined with Tikhonov regularization method for solving an 

inverse heat conduction problem. Li et al. [27] approximated the un- 

known boundary conditions by the polynomial functions and solved the 

2-D Cauchy problem by using the meshless scheme. Fan et al. [28] dealt 

with the Cauchy problem by the generalized finite difference method. 

Yeih et al. [29] used the modified Tikhonov’s regularization to solve the 

Cauchy problem of the nonlinear steady-state heat conduction problem. 

Wang et al. [30] solved the 3-D inverse heat conduction problems by 
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Nomenclature 

b polynomial coefficient 

c specific heat 

C i singularity coefficient 

d degree of the polynomial 

E estimated Hessian matrix 

f ( x, z j ) radial basis function 

G, H coefficient matrices of BEM 

⌢ 

𝐇 Hessian matrix 

J ( b ) objective function 

k iteration number 

L number of boundary nodes 

N number of collocation points 

n unit outward normal to the boundary 

p ( x ) polynomial 

p a possibility of finding 

𝑞 est 
𝑖 

estimated heat flux 

𝑞 exa 
𝑖 

exact heat flux 

𝑞 prescribed normal derivative of temperature 

R distance between observation and collocation points 

S number of inverse nodes 

t time variable 

T temperature vector 

T 

c exact temperature vector 

T 0 initial temperature 
⌢ 

𝑇 𝑖 computed temperature 

�̄� prescribed temperature 

𝑇 est 
𝑖 

estimated temperature 

𝑇 exa 
𝑖 

exact temperature 

T ( x , t ) temperature 

�̂� ( 𝐱 , 𝐳 𝑗 ) particular solution 

u normal stochastic variable 

w random variable vector 

x i i -th component of coordinates 

x coordinate 

z j j -th collocation point 

Greek symbols 

𝛼j , 𝛾 j unknown coefficients 

Γ boundary of the domain 

Γ( z ) gamma function 

Δt time step 

𝜀 convergence criterion 

𝜃 polar coordinate angle 

𝜆( x ) thermal conductivity 

𝜇 step size 

𝜉 a number with the range [0,1] 

𝜌 density 

𝜎 standard deviation 

𝜑 Lévy exponent 

𝜒 regularization parameter 

Ω a bounded region 

𝜕 0 step size parameter 

the truncated SVD. Su et al. [31] , Singh et al. [32] and Duda [33] iden- 

tified the time-dependent heat flux by the Levenberg-Marquardt algo- 

rithm. Cui et al. used the Levenberg-Marquardt algorithm to determine 

the damping factors [34] and the multi-parameters of boundary heat 

flux [35] . The conjugate gradient method (CGM) is the most effec- 

tive method for solving the boundary condition identification problems. 

Alifanov and Mikhailov [36,37] determined the unknown heat flux 

by the CGM. Hào and Lesnic [38] solved the Cauchy problem for the 

Laplace equation by the CGM. Huang et al. [39,40] estimated the surface 

heat flux in 3-D heat conduction problem by the CGM. Singh and Tanaka 

[41] applied the DRBEM and preconditioned CGM to estimate heat flux. 

Bozzoli and Rainieri [42] reconstituted the heat flux density distribution 

in 2-D steady-state heat conduction problem by the CGM. Mohamma- 

diun et al. [43] applied the CGM to estimate the time-dependent heat 

flux. Yang and Chen [44] identified the unknown time-dependent heat 

flux of the disc by the CGM. Mohebbi and Sellier [45] used the CGM to 

identify the thermal conductivity, heat transfer coefficient and heat flux 

in 3-D problem based on the finite difference method. It should be con- 

cluded that the CGM can solve the inverse problems efficiently, but it is 

a locally convergent method and the results are sensitive to the initial 

values. 

Recently, the stochastic optimization methods have become popular 

means for solving the inverse problem due to their capability of finding 

the global optimal without computing the complicated gradient of the 

objective function. Up to now, most of the numerical works for resolving 

inverse heat transfer problems are based on genetic algorithms (GA), 

particle swarm optimization (PSO) and other metaheuristic algorithm. 

Karr et al. [46] solved the inverse initial value, boundary value problems 

by the GA. Vakili and Gadala [47] identified the heat flux by using the 

PSO algorithm. Liu [48,49] estimated the surface heat flux in 3-D heat 

conduction problems based on the PSO. Wang et al. [50] applied the 

double decentralized fuzzy inference method to estimate the time and 

space-dependent thermal boundary conditions. 

Based on the interesting and rather awkward way of survival of the 

cuckoo species, Yang and Deb [51] proposed the cuckoo search (CS) 

algorithm. The CS algorithm has advantages of good global search ca- 

pability and few control parameters. Up to now, the CS algorithm has 

been widely used in hydrothermal scheduling problems [52] , aerody- 

namic shape optimizations [53] and reliability optimization problems 

[54] . Udayraj et al. [55] compared the PSO, ant colony optimization 

and CS algorithms for inverse heat transfer problems. 

Recently, Zhou et al. [56] used the firefly algorithm and the Newton 

method to identify the time-dependent boundary conditions for the tran- 

sient heat conduction problem in homogeneous medium. The unknown 

temperature without polynomial approximation is directly identified, 

and the computation dimensionality and time of the inverse problem 

are very large. In this paper, a polynomial function [27] with unknown 

coefficients is developed to approximate the unknown temperature and 

the inverse problem is transformed into finding the unknown coeffi- 

cients of the polynomial function. In this way, the dimensionality of the 

inverse problem is reduced significantly. What’s more, the CS-BFGS al- 

gorithm is proposed to identify boundary conditions for the transient 

heat conduction problem in functional gradient material. 

The structure of this paper is organized as follows: firstly, the direct 

problem is solved by the DRBEM in Section 2 . The unknown boundary 

temperature is approximated by the polynomial and the objective func- 

tion is defined in Section 3 . The theory and the flowchart of the CS-BFGS 

are shown in Section 4 . Numerical examples are presented in Section 5 . 

Finally, some conclusions are drawn in Section 6 . 

2. Direct problem 

2.1. Governing equation 

The governing equation of transient heat conduction problem in 

functional gradient material can be expressed as 

𝜕 

𝜕 𝑥 1 

( 

𝜆( 𝐱 ) 𝜕𝑇 ( 𝐱 , 𝑡 ) 
𝜕 𝑥 1 

) 

+ 

𝜕 

𝜕 𝑥 2 

( 

𝜆( 𝐱 ) 𝜕𝑇 ( 𝐱 , 𝑡 ) 
𝜕 𝑥 2 

) 

= 𝜌𝑐 
𝜕𝑇 ( 𝐱, 𝑡 ) 

𝜕𝑡 
, 𝑡 ≥ 0 , 𝐱 ∈ Ω (1) 

and the initial condition is given as 
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