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Repeated modifications and iterative recalculations cost a great amount of computation time in the structural
design process. Reanalysis is an efficient computational method that can ensure the accuracy of a solution in
place of repeated full finite element analysis (FEA) and other numerical methods. In this study, an update-grid
(UG) reanalysis (UGR) method is suggested to analyse three-dimensional (3D) heat transfer problems. Compared
with other reanalysis methods, the suggested method easily establishes a mapping between initial meshes and
modified meshes using the mapping relationship. Generally, a modified structure can be reanalysed by directly
reusing transfer operators from the UR analysis. Therefore, the modified meshes can be solved by constructing a
map from the initial meshes, even if the model is totally re-meshed. Moreover, considering the accuracy of the
analysis, a node-based smoothed finite element method (NS-FEM) is used as the main solver. To evaluate the
performance of the suggested method, several heat transfer problems are investigated. The results demonstrate
that the UGR method is more accurate and efficient compared with the popular multi-grid (MG) preconditioned

conjugate gradient (PCG) method.

1. Introduction

Heat transfer analysis of modified structures is a key issue in engi-
neering optimization problems. However, the optimization procedure
is often accompanied by repeated iterative modifications and recalcu-
lations. Therefore, computational cost is expensive in practice. There-
fore, an auxiliary computational method, reanalysis, has been proposed
to substitute full finite element analysis (FEA) during optimization. In
the past decades, several reanalysis methods have been suggested and
applied in multiple disciplines. Generally, reanalysis methods can be
classified into two categories: direct methods (DMs) and approximate
methods. DMs are usually applied to local or low-rank modification and
were first proposed by Sherman and Morrison in the 1950s [1]. Sub-
sequently, Woodbury developed a DM for multiple rank-one changes
[2]. The SMW formula is an exact reanalysis method suitable for only
low-rank modification. For multiple modifications, the SMW formula
would be performed repeatedly, and its efficiency would drop. To make
reanalysis more feasible, several alternative reanalysis methods were
suggested. In the early 2000s, Noor presented the advances and appli-
cations of reduction methods for large systems [3]. Chen et al. devel-
oped a static displacement reanalysis method based on usual pertur-
bation and Padé approximation [4]. Chen and Wu proposed an eigen-
value reanalysis method based on the Neumann series expansion and
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epsilon-algorithm [5]. Yang et al. presented a multi-sample compres-
sion algorithm for elastoplastic FEM [6]. Song et al. proposed a novel
reanalysis algorithm differing from the Woodbury formula based on up-
dating the triangular factors of the original stiffness matrix [7]. For
large-scale problems, Huang and Wang proposed the independent co-
efficient (IC) method, which only requires initial responses without a
decomposition operator [8]; they also developed an indirect factoriza-
tion updating (IFU) method for boundary modifications [9]. Gao and
Wang presented a reanalysis method based on block matrices to han-
dle large modification problems [10]. For high-rank problems, approx-
imate methods are widely used. Of those methods, combined approxi-
mation (CA) may be the most popular approximate reanalysis method
[11,12].

In the early 1990s, the first study on the CA method for structural op-
timization problems was proposed by Kirsch [13]. Sequentially, Kirsch
presented a unified approach for all types of topological modifications
[14]. CA has been widely used in multiple disciplines, such as struc-
tural static reanalysis [11,15], nonlinear dynamic reanalysis [16,17],
and topological optimization [18], due to its feasibility. Based on CA,
other alternative methods were developed. For example, Wu et al. inte-
grated reanalysis and PCG to both add and remove degrees of freedom
(DOFs) [19,20]. Based on residual increment approximations, Materna
et al. developed a nonlinear reanalysis method [21]. For heat transfer
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Abbreviations

FEA finite element analysis

UG update-grid

UGR update-grid reanalysis

GMG geometric multi-grid

DOF degrees of freedom

BEM boundary element method

NS-PIM node-based smoothed point interpolation method
NS-FEM node-based smoothed finite element method
AMG algebraic multi-grid

DM direct method

IC independent coefficient

MG multi-grid

CA combined approximation

IFU indirect factorization updating

MGPCG multi-grid preconditioned conjugate gradient method
PCG preconditioned conjugate gradient

problems, Feng et al. used the CA method to solve transient nonlinear
dynamic heat conduction problems [22]. Wang et al. extended CA and
IC for heat condition problems [23]. To solve the large-scale CAE model,
some efficient parallel reanalysis methods were developed based on GPU
platforms [24-26].

Theoretically, reanalysis can be employed for different kinds of
solvers, such as FEM [3,26], the meshless method [27,29,30] and
the boundary element method (BEM). However, FEM has inherent
weaknesses known as the overly stiff phenomenon and the lower
bound solution. Therefore, some gradient smoothing techniques were
developed to solve these problems [28-31]. According to the "soft-
ened" behaviour, SFEM has been proved to produce upper bound
solutions for heat transfer problems [28-35]. For example, a node-
based smoothed point interpolation method (NS-PIM) was developed
to analyse steady-state thermoelastic problems [36]. NS-PIM was ap-
plied to solve three-dimensional (3D) heat transfer problems with com-
plex geometries and complicated boundary conditions [28]. In addi-
tion, NS-FEM was extended to solve acoustic problems by Wang [37].
Therefore, NS-FEM is used as the main solver of reanalysis in this
study.

For reanalysis, mesh consistency is the main limitation for practi-
cal applications. Most existing reanalysis methods require high con-
sistency between initial meshes and modified meshes. This means the
nodal locations of initial meshes and modified meshes should be deter-
mined before reanalysis. Therefore, to avoid these operations on meshes,
the UGR method was developed in this study. The update-grid method
mainly uses two grids (the initial and modified meshes) directly without
any preprocessing, similar to the multi-grid (MG) method. Moreover,
compared with other methods, the most significant advantage of MG
is asymptotic convergence [38]. MG methods are mainly divided into
two categories: geometric multi-grid (GMG) and algebraic multi-grid
(AMG). Compared with GMG, AMG only uses virtual meshes generated
by algebraic methods (rather than an extra geometric mesh). In previous
studies, Amir used MG in topology optimization by combining it with
approximate reanalysis [39] and offered significant improvements with
respect to the original contribution. Huang et al. also integrated MG and
reanalysis for fast structure analysis [40].

The rest of this paper is organized as follows. The basic theories of
heat transfer are briefly described in Section 2. The basic theories of
NS-FEM and UGR are presented in Section 3. In Section 4, four cases
demonstrate the performance of the UGR method. Finally, summaries
are given.

143

Engineering Analysis with Boundary Elements 95 (2018) 142-153
2. Thermal governing equations and boundary conditions

The equilibrium equation of three-dimensional heat transfers prob-

lem can be written as:
0°T ’T *T

(kxﬁ Xa_y2+kxﬁ +Q(x,y,z)—pc
where T(x, y, 2) is the temperature at time t, Q(x, y, 2) is the rate of
internal heat, p is density, c is specific heat and k,, ky and k, are the heat
conductivities in the x, y and z directions, respectively. The boundary
conditions that are considered are as follows:

T (x,y,z)

k
+ ot
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Initial boundary : T'(x,y,z,t=0)=T, 2)
Dirichlet boundary : T =T, 3)
Neumann boundary : —k or =q, 4)
on, r
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Robin boundary : —ka =h, (T - Too) 5)
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where T is the initial temperature, T; is the known temperature, T
is the environmental temperature, g, is the prescribed heat flux, h, is
the convection coefficient, n, is the outward normal direction of the

boundary and I represents the boundary.
3. NS-FEM reanalysis

Reanalysis is an auxiliary solver to improve the efficiency of a main
solver. Generally, most reanalysis methods are based on FEM. However,
traditional FEM has been deemed "overly stiff' numerically. Therefore,
SFEM is used in this study. Among various SFEM models, NS-FEM has
some important properties, such as the following:

(1) It is softest and possesses an upper bound;

(2) It uses linear, triangular and tetrahedral elements;

(3) It can guarantee accurate and convergent properties of solutions;
and

(4) The temperature at the node can be calculated directly.

Therefore, NS-FEM is used as the main solver.
3.1. NS-FEM based on tetrahedron elements

As shown in Fig. 1, for a tetrahedron element, the smoothing domain
Q® associated with node k is generated by sequentially connecting the
mid-edge points to the centroids of the surface triangles and tetrahe-
drons.

In NS-FEM, a smooth strain in domain Q® associated with node k
can be created according to the strain e = V,u:
& = / e(x)P, (x)dQ = / Vu(x)®, (x)dQ (6)

2 e
where @, (x) is a given smoothing function that satisfies the least unified
properties, u is the trial function and V,u is the symmetric gradient of
the temperature field.

/ ®,(x)dQ = 1
Q

The local constant smoothing function can be given as:

1/v®, xea®
D, (x) = {0’ x ¢ QW

where V® is the volume of the smoothing domain Q®:
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