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a b s t r a c t 

A dual reciprocity precise integration method (DRPIM) is presented to solve 3-dimensional transient heat con- 

duction problems. In the presented method, the transient heat conduction problem, which is an initial boundary 

value problem, is transformed into an initial value problem (IVP) through a dual reciprocity scheme. Then an 

analytical solution, which is described by terms of the matrix exponential function (MEF), to this IVP is applied. 

A precise integration method (PIM) is finally applied to compute the MEF accurately. The accuracy and stability 

of the presented method are demonstrated by three numerical examples. 

1. Introduction 

With applying Fourier’s heat conduction law, the transient heat con- 
duction problem is usually governed by a partial differential equation 
(PDE) of parabolic type. The most popular numerical method for the 
transient heat conduction problem is the finite difference method (FDM) 
since it seems to be very nature in the solution to the transient heat 
conduction problem [1] . However, in the application of FDM for tran- 
sient heat conduction problem, numerical stability is a very cumbersome 
problem. In order to circumvent this numerical stability problem, many 
criterions have been proposed to guarantee the numerical stability [2] . 

Besides the FDM, many other numerical methods for transient heat 
conduction problem have also been developed such as the finite vol- 
ume method (FVM) [3] , the finite element method (FEM) [4] , the mesh- 
less methods(MM) [5–9] and the boundary element method(BEM) [10] . 
Among these methods, the BEM is very attractive since it is considered 
as a boundary type method which involves only boundary meshes but 
not domain meshes. Due to the boundary only advantage, a large quan- 
tity of computational costs could be saved. In many applications of BEM 

for transient heat conduction problem, the finite difference (FD) scheme 
is usually applied for time discretization. In those applications, the sta- 
bility of the method depends on the discretization scheme. Thus, the 
FDBEM is also conditionally stable [11] . 

The BEM implementation for transient heat conduction problem 

can be classified into two types. In one type of BEM implementation, 
the time-dependent fundamental solution to unsteady heat conduction 
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problem is applied [12–16] . While in the other type of BEM implemen- 
tation, the time-independent fundamental solution to steady heat con- 
duction problem is applied [17–22] . In the implementation with time 
dependent fundamental solution, there are two different approaches to 
deal with the affection from the front steps. The one is the time convolu- 
tion method in which each step should considers results obtained in all 
the front steps [11–15] . This approach is very time consuming especially 
in the case that many time steps are involved. Many schemes have been 
developed accelerate this time convolution process [12–14] . Gupta et 
al. expanded the fundamental solution into Taylor series [12] . The time 
variable was separated from all the terms in the series after expansion. 
Making use of the monotonicity of the fundamental solution, Chatterjee 
and Ma et al. developed a fast time convolution algorithm to accelerate 
the calculation of the integrals [ 13 , 14 ]. The other approach is usually 
called by the quasi-initial condition method in which the temperature 
distribution all around the considered domain computed in the current 
time step is considered as the initial temperature distribution in the next 
time step. Zhou et al. applied this quasi-initial condition method for the 
transient heat conduction [16] . This method, however, was found to be 
numerically unstable. In order to circumvent this numerically unstable 
problem, a time step amplification method is developed. 

In those implementations of quasi-initial condition method above, 
however, the domain integral, which is introduced by the quasi-initial 
temperature, are involved in each step. A domain mesh is required 
if we directly calculate the domain integral. Thus, the boundary only 
advantages of the BEM vanished. Moreover, in the case of employing 
small time steps, numerical computation of the domain integral becomes 
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difficult due to the sharp variation of the fundamental solution. In or- 
der to avoid the direct computation of the domain integral, Gao and 
Yang introduced a radial integral method (RIM) in the BEM to transform 

the domain integral into the boundary integral [17–20] . Partridge et al. 
firstly applied the dual reciprocity boundary element method (DRBEM) 
for transient heat conduction [21] . Guo et al. applied a triple reciprocity 
method to avoid the domain integrals that appear in the boundary inte- 
gral equation of the transient heat conduction problem [22] . 

In most of implementations of BEM for transient heat conduction 
problem, the finite difference (FD) scheme is usually employed to dis- 
crete the time variable. As stated before, the FDBEM is conditionally 
stable. For large time step cases, the numerical results become unstable. 
In order to circumvent this cumbersome problem, Yu et al. coupled the 
DRBEM and the precise time-domain expanding method for transient 
heat conduction and avoided the direct computation of the domain in- 
tegral [23] . Yao et al. equipped the RIM and the precise integration 
method (PIM), which is firstly proposed by Zhong et al. to solve struc- 
ture dynamic problems [24] , in the BEM for transient heat conduction 
[25] . In the PIM, a general solution, which is described by matrix expo- 
nential function, for initial value problem is applied. Thus, it is uncondi- 
tionally stable. Zhong and Yang developed a special scheme to compute 
the matrix exponential function precisely [26] . The PIM is considered 
to be a promising method for initial boundary value problems including 
transient heat conduction, diffusion, wave propagation and structural 
vibration. 

This paper will present a new implementation of the DRBEM and the 
PIM to solve transient heat conduction problems. In the application, the 
transient heat conduction problem is firstly taken as a quasi-steady state 
problem and the derivative of the temperature respect to time is con- 
sidered as the equivalent heat source. The DRM is applied to transform 

the domain integral about the heat source into the boundary integral. 
After discretization for space variables, an initial value problem about 
the distribution of temperature inside domain will be obtained. The PIM 

is finally applied to solve this initial value problem precisely. After the 
computation of temperatures at domain nodes, the boundary quanti- 
ties including both temperatures and flux will be computed through a 
boundary integral equation. It should be noted that, there are two major 
difference in the application of DRM in this paper from the traditional 
application of DRM. The first one is the locations of the RBF points. 
In the presented method, the RBF interpolation points locate inside do- 
main but not on the boundary. Thus, a lot of computational costs can 
be saved especially for problems on thin-shell like structures. The other 
one is the assembling of the equations. The boundary temperatures and 
flux are both considered to be unknowns at the first. The boundary con- 
dition is introduced in the supplement equations. Thus, the boundary 
condition of Robin type can be imposed naturally. 

Three numerical examples concerning transient heat conduction 
problems on three different structures will be presented to illustrate the 
accuracy and the stability of the method. 

This paper is arranged as follows. Some basic knowledges about 
DRBEM for transient heat conduction problems will be introduced in 
Section 2 . The PIM will be described in detail in the following section. 
In HYPERLINK \l "sec0004" Section 4 , three validation numerical ex- 
amples will be presented. This paper ends with conclusions in the last 
section. 

2. The dual reciprocity method for transient heat conduction 

The DRM is considered as an attractive method with extends the ap- 
plication area of the BEM to nonhomogeneous problems. In the DRM, 
the radial basis function (RBF) interpolation plays a great important 
role. The particular solution of the RBF to the corresponding problem is 
applied in the reciprocity process to convert the domain integral, which 
appears in the boundary integral equation and is related to the nonho- 
mogeneous term, into boundary integrals. 

The transient heat conduction problem in homogeneous media is 
usually stated by: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝑘 ∇ 

2 𝑢 ( 𝐱, 𝑡 ) + 𝑄 ( 𝐱, 𝑡 ) = 𝜌𝑐 ̇𝑢 ( 𝐱, 𝑡 ) , ∀𝐱 ∈ Ω
𝑢 ( 𝐱, 𝑡 ) = �̄� ( 𝐱, 𝑡 ) , ∀𝐱 ∈ 𝑆 𝑢 

− 𝑘 
𝜕𝑢 ( 𝐱, 𝑡 ) 
𝜕𝑛 ( 𝐱 ) 

≡ 𝑞 ( 𝐱, 𝑡 ) = 𝑞 ( 𝐱, 𝑡 ) , ∀𝐱 ∈ 𝑆 𝑞 

𝑞 ( 𝐱, 𝑡 ) = 𝛽( 𝑢 ( 𝐱, 𝑡 ) − 𝑢 𝑎 ( 𝐱, 𝑡 ) ) , ∀𝐱 ∈ 𝑆 𝑅 

𝑢 
(
𝐱, 𝑡 0 

)
= 𝑢 0 ( 𝐱 ) , ∀𝐱 ∈ Ω

(1) 

in which ∇ 

2 = 

𝜕 2 

𝜕𝑥 2 1 
+ 

𝜕 2 

𝜕𝑥 2 2 
+ 

𝜕 2 

𝜕𝑥 2 3 
is the Laplacian in 3D. u stands for the tem- 

perature, q denotes for flux rate across the boundary, dot over the tem- 
perature means variation rate of temperature along time variable t. Q 

is the heat source, k , 𝜌and c are heat conductivity, density and heat ca- 
pacity of the material, respectively. Ω is the considered domain, n is the 
outward normal on the boundary. S u , S q and S R denote for the bound- 
ary of Dirichlet type, Neumann type and Robin type, respectively. �̄� is 
specified temperature on the boundary S u . 𝑞 is the specified flux on the 
boundary S q . 𝛽 is the heat exchange parameter on the boundary S R . u a 
is the temperature of the fluent over the boundary S R . u 0 stands for the 
known temperature at initial time t 0 . The symbol dot over the variable 
denotes for the derivatives respect to time. 

In the BEM, the governing equation in problem ( 1 ) is converted to 
a boundary integral equation with the help of the fundamental solution 
of a steady state heat conduction problem. 

1 
𝜌𝑐 ∫Γ 𝑢 ( 𝐱 , 𝑡 ) 

( 

𝑘 
𝜕 𝑢 ∗ ( 𝐲 , 𝐱 ) 
𝜕𝑛 ( 𝐱 ) 

) 

𝑑Γ( 𝐱 ) − 

1 
𝜌𝑐 ∫Γ 𝑢 

∗ ( 𝐲 , 𝐱 ) 
( 

𝑘 
𝜕𝑢 ( 𝐱 , 𝑡 ) 
𝜕𝑛 ( 𝐱 ) 

) 

𝑑Γ( 𝐱 ) 

+ 

1 
𝜌𝑐 ∫Ω 𝑢 ∗ ( 𝐲 , 𝐱 ) 𝑄 ( 𝐱 , 𝑡 ) 𝑑Ω( 𝐱 ) + 

𝑘 

𝜌𝑐 ∫Ω 𝑢 ∗ ( 𝐲 , 𝐱 ) ̇𝑢 ( 𝐱 , 𝑡 ) 𝑑Ω( 𝐱 ) = 𝐶( 𝐲 ) 𝑢 ( 𝐲 , 𝑡 ) (2) 

Where 

𝐶( 𝐲) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

0 𝐲 ∈ Ω ∪ Γ
1 𝐲 ∈ Ω
𝜃 𝐲 ∈ Γ

(3) 

𝜃 is the solid angle of the boundary, and 𝜃= 0.5 when y locates at a 
smooth boundary. 

𝑢 ∗ ( 𝐲 , 𝐱 ) = 

1 
4 𝜋𝑟 ( 𝐲 , 𝐱 ) 

(4) 

is called the fundamental solution of a steady state heat conduction 
problem. It satisfies: 

∇ 

2 𝑢 ∗ ( 𝐲 , 𝐱 ) = − 𝛿( 𝐲 , 𝐱 ) (5) 

For convenience, we omit the heat source inside domain. Then we 
have the following integral equation. 

𝐶( 𝐲 ) 𝑢 ( 𝐲 , 𝑡 ) = 

1 
𝜌𝑐 ∫Γ 𝑢 ( 𝐱 , 𝑡 ) 

( 

𝑘 
𝜕 𝑢 ∗ ( 𝐲 , 𝐱 ) 
𝜕𝑛 ( 𝐱 ) 

) 

𝑑Γ( 𝐱 ) 

− 

1 
𝜌𝑐 ∫Γ 𝑢 

∗ ( 𝐲 , 𝐱 ) 
( 

𝑘 
𝜕𝑢 ( 𝐱 , 𝑡 ) 
𝜕𝑛 ( 𝐱 ) 

) 

𝑑Γ( 𝐱 ) 

− 

𝑘 

𝜌𝑐 ∫Ω 𝑢 ∗ ( 𝐲 , 𝐱 ) ̇𝑢 ( 𝐱 , 𝑡 ) 𝑑Ω( 𝐱 ) (6) 

The DRM is applied to convert the domain integral into boundary 
integral. We applied a RBF interpolation for �̇� ( 𝐲, 𝑡 ) . 

�̇� ( 𝐲, 𝑡 ) = 

∑
𝑖 

𝛼𝑖 ( 𝑡 ) 𝜑 𝑖 ( ‖‖𝐲 − 𝐳 𝑖 ‖‖) (7) 

In which 𝜙i ( ‖y − z i ‖) is the RBF centered at z i . ‖ • ‖ denotes the Euclid 
norm in 3D space. Although there are many kinds of RBF, we employ 
the multiquadric function in this paper. 

𝜑 𝑖 ( ‖‖𝐲 − 𝐳 𝑖 ‖‖) = 

√
𝑟 2 + 𝑠 2 (8) 

s is the shape parameter of the multiquadric function. Nd centers of RBF 
locate inside the domain uniformly or randomly. Then after collocation 
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