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a b s t r a c t 

In this paper, the generalized finite difference method (GFDM) combined with the Newton–Raphson method is 
proposed to accurately and efficiently simulate the steady-state double-diffusive natural convection in parallel- 
ogrammic enclosures filled with fluid-saturated porous media. The natural convection in fluid-saturated porous 
media, which is interesting in regard to the heat-transferring range, involves different physical compositions to 
affect the fluid flow. For the mathematical formulations of the natural convention, the governing equations are a 
system of highly-nonlinear partial differential equations, so the approximate solutions for the natural convention 
mainly depend on a suitable numerical scheme. In this study, the GFDM, a newly-developed meshless method, 
is adopted for the spatial discretization of the non-linear governing equations, since it can avoid setting up the 
mesh in the computational domain and implementing the numerical quadrature. The localization of the GFDM 

will result in a sparse system, while the derivatives at each node can be expressed as linear combinations of nearby 
function values with different weighting coefficients. After a system of nonlinear algebraic equations is yielded 
by the spatial discretization of the GFDM, the two-steps Newton–Raphson method is adopted to efficiently solve 
this resultant sparse system owing to the localization of the GFDM. Three numerical examples are presented to 
demonstrate the applicability and stability of the proposed meshless numerical scheme. Besides, the numerical 
results are compared with other solutions to show the accuracy of the proposed method. 

1. Introduction 

The double-diffusive natural convection in parallelogrammic enclo- 
sures filled with fluid-saturated porous media is driven by the varia- 
tion of the densities affected by various physical components, such as 
temperature and concentration. To analyze this problem by using any 
mathematical method is extremely difficult, since the governing equa- 
tions are highly non-linear [1,2] . Hence, it is necessary to adopt an ap- 
propriate numerical scheme in order to accurately and efficiently deal 
with the double-diffusive natural convection in fluid-saturated porous 
media. The review of the double-diffusive natural convection in fluid- 
saturated porous media has been provided by Nield and Bejan [1] . 
In the past, the double-diffusive natural convection in fluid-saturated 
porous media has been numerically studied by some researchers 
[2–6] . For example, in 2004, Costa [2] used the finite element method 
to solve the two-dimensional double-diffusive natural convection in par- 
allelogrammic enclosures filled with fluid-saturated porous medium. 
Bourich et al. [3] applied the alternating direction implicit method to 
simulate the time-dependent double-diffusive natural convection in a 
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square enclosure. Kramer et al. [4] adopted the Navier–Stokes equa- 
tions to describe the heat and mass transfer, and applied the bound- 
ary domain integral method to simulate the double-diffusive natural 
convection. In addition, Stajnko et al. [5] used the boundary element 
method to analyze the three-dimensional double-diffusive natural con- 
vection in porous media. Recently, Fan et al. [6] utilized the local 
radial basis function (RBF) collocation method (LRBFCM), one of the 
most-promising meshless methods, to solve the double-diffusive natu- 
ral convection in parallelogrammic enclosures filled with fluid-saturated 
porous media. Although the LRBFCM can efficiently and accurately an- 
alyze the double-diffusive natural convection, the shape parameter in 
the RBF, which will have great influence on the accuracy of numeri- 
cal results, should be determined by trial-and-error tests. The optimal 
choice of the shape parameter in the RBF is still an open question. Ac- 
cording to the above discussions, it can be found that many numerical 
schemes have been adopted to accurately analyze the double-diffusive 
natural convection. Most of these numerical schemes are belonged to 
the classical mesh-dependent methods, which required time-consuming 
tasks of mesh generation and numerical quadrature. Thus, in this pa- 
per, we proposed an efficient and stable meshless numerical scheme to 
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investigate the two-dimensional steady-state double-diffusive natural 
convection in parallelogrammic enclosures filled with fluid-saturated 
porous media. 

From the viewpoint of requirement of mesh or randomly-distributed 
nodes, the numerical methods for spatial discretizations of partial dif- 
ferential equations (PDEs) can be generally sorted to two families: the 
mesh-dependent methods and the meshless methods. In order to sim- 
ply the numerical procedures and accelerate the computer simulation, 
to use the meshless methods can avoid the time and labor to generate 
mesh and to implement numerical quadrature. Thus, there are various 
meshless methods proposed in the past two decades, such as the method 
of fundamental solutions [7,8] , the boundary knot method [9] , the Tre- 
fftz method [10,11] , the singular boundary method [12–14] , the bound- 
ary particle method [15] , the method of particular solutions [16,17] , 
the LRBFCM [6] , the meshless local Petrov–Galerkin method [18] and 
the generalized finite difference method (GFDM) [19-33] , etc. Among 
them, the GFDM is one of the most-promising domain-type meshless 
methods. 

The GFDM is evolved from the classical finite difference method, 
which is a simple and accurate numerical method. The numerical 
procedures of the GFDM are developed from the Taylor series expan- 
sion and the moving-least-squares method, so the derivatives with re- 
spect to space coordinates can be expressed as linear combinations of 
nearby function values within a star. By comparing with the finite dif- 
ference method, the GFDM can use non-uniform grids and be easily ap- 
plied to problems in irregular computational domains. In 2001, Ben- 
ito et al. [19] proposed the explicit formulations of the GFDM and 
tested several factors of the GFDM [20] . Then, GFDM was applied 
to parabolic and hyperbolic PDEs [21] and advection–diffusion equa- 
tion [22] . After these initial works of the GFDM mentioned above, re- 
searchers paid attention to the GFDM and applied the GFDM to deal with 
some engineering problems, such as, two-dimensional nonlinear obsta- 
cle problems [23] , density-driven groundwater flows [24] , thermoe- 
lastic wave propagation analysis [25] , non-Fickian diffusion–elasticity 
analysis [26] , two-dimensional shallow water equations [27] , inverse 
heat source problems [28] , non-linear elliptic PDEs [29] , wave prob- 
lems [30] , three-dimensional inhomogeneous Helmholtz-type equations 
[31] , coupled thermoelastic analysis [32] , etc. From the above discus- 
sions of the GFDM, it is evident that the GFDM has been adopted for 
numerical solutions of complicated PDEs and has great potential to be 
utilized to deal with various engineering problems. Accordingly, we 
adopted the GFDM for spatial discretization of the governing equa- 
tions of two-dimensional double-diffusive natural convection in paral- 
lelogrammic enclosures filled with fluid-saturated porous media in this 
paper. 

While the GFDM is responsible for the spatial discretization of the 
governing equation of the double-diffusive natural convection, consid- 
ered in this paper, a system of nonlinear algebraic equations (NAEs) 
will be yielded. Therefore, an efficient and stable solver for NAEs is 
required. In the past, many solvers for NAEs have been developed to ef- 
ficiently solve the system of NAEs, such as the Newton–Raphson method 
[34] , the exponentially-convergent scalar homotopy algorithm (ECSHA) 
[6,35] , the FTIM [33,36] , etc. Although the ECSHA and the FTIM can 
avoid the time-consuming calculations of the inverse of the Jacobian 
matrix [6,34–36] , there are some troublesome free parameters, which 
will greatly influence on the accuracy and efficiency of computer sim- 
ulation, in these two solvers. In order to achieve highly-efficient solver 
for a system of NAEs, our research group [24] in 2014 re-formulated 
the iterative process of the Newton–Raphson method into two sequen- 
tial steps so as to avoid the time-consuming calculation of the inverse 
of the Jacobian matrix. Within one iteration step, a sparse system of 
linear algebraic equations, formed by the GFDM, should be efficiently 
solved, and then the new physical value at the next iteration step can 
be updated. The two sequential steps should be repeatedly implemented 
until the convergent solutions are acquired. Using these two sequential 
steps of the Newton–Raphson method not only can avoid computing 

the inverse of Jacobian matrix but also keep the great efficiency of the 
Newton–Raphson method, especially for large-scale engineering prob- 
lems. 

The study in this paper might be regarded as an extension of our 
previous research [24] to steady-state double-diffusive natural convec- 
tion in parallelogrammic enclosures filled with fluid-saturated porous 
media. In [24] , we combined the GFDM and the two-steps Newton–
Raphson method to accurately study the time-dependent natural con- 
vection in groundwater and the interaction between the streamfunction 
and concentration are efficiently simulated by the proposed method. 
In comparing with [24] , in this paper we adopted the GFDM and the 
Newton–Raphson method to accurately solve more complicated system 

of PDEs, which involves the interaction between streamfunction, tem- 
perature and concentration. Thus, there are three nonlinear PDEs with 
three physical variables in the present study, which pose a great chal- 
lenge to numerical simulation. In addition, the initial guess of Newton–
Raphson method in a time-dependent problem can be easily determined 
by using the numerical results from the previous time step [24] . On the 
contrary, it is a non-trivial task to study the initial guess of Newton–
Raphson method in the steady-state problem in this paper, since there 
is no solution in the previous time step can be used. In addition to 
the differences of mathematical formulation and initial guess of iter- 
ation between this study and [24] , in this paper we used the paral- 
lelogrammic computational domain and arbitrarily-distributed nodes, 
which does not appear in [24] , to verify the features of proposed mesh- 
less scheme. Therefore, the combination of the GFDM and the two-step 
Newton–Raphson method is proposed in this paper to accurately and 
efficiently study the double-diffusive natural convection in parallelo- 
grammic enclosures filled with fluid-saturated porous media. Besides, 
different parameters, such as the number of total nodes, the number of 
nodes in a star, the initial guess of iteration and the buoyancy ratio, 
are adopted to demonstrate the merits of proposed numerical scheme. 
The successful study in this paper can lead the extension of the pro- 
posed numerical scheme to some challenging engineering applications 
of steady-state nonlinear multi-physics problems in the future. 

This paper is organized as follows: the motivation of this study and 
the discussions of relevant research are provided in the first section. The 
mathematical formulation of the double-diffusive natural convection in 
fluid-saturated porous media is described in the second section. Then, 
the proposed meshless numerical schemes are described in Section 3 . In 
Section 4 , we presented three numerical examples to verify the accu- 
racy, efficiency and stability of proposed numerical scheme, while the 
conclusions and discussions, based on the numerical results and com- 
parisons, are drawn in the final section. 

2. Mathematical formulation of the physic problem 

Considering the pressure–velocity link for the fluid in the porous 
medium given by the Darcy’s law and defining the streamfunction 𝜓( x,y ) 
through its 1st-order derivatives, the dimensionless governing equations 
can be written as [1,2] : 
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where ( x, y ) is the spatial coordinates, T ( x, y ) is the dimensionless tem- 
perature, C ( x, y ) is the dimensionless concentration, Ra is the Rayleigh 
number, Le is the Lewis number, N is the buoyancy ratio and Ω is the 
computational domain. The detailed discussions of the above equations 
can be found in some previous studies [1,2] . Since 𝜓 , T and C are the un- 
known variables, so the multiplicative terms of the first derivative are 
the nonlinearity in Eqs. (2) and (3) . Therefore, those nonlinear terms 
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