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a b s t r a c t 

In present paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the solution of 
nonlinear coupled Burgers’ equation in two dimensions. Firstly, we obtain a time discrete scheme by approximat- 
ing time derivative via a finite difference formula, then we use the SMRPI approach to approximate the spatial 
derivatives. This method is based on a combination of meshless methods and spectral collocation techniques. The 
point interpolation method with the help of radial basis functions is used to construct shape functions which act 
as basis functions in the frame of SMRPI. In the current work, the thin plate splines (TPS) are used as the basis 
functions and in order to eliminate the nonlinearity, a simple predictor-corrector (P-C) scheme is performed. The 
aim of this paper is to show that the SMRPI method is suitable for the treatment of nonlinear coupled Burgers’ 
equation. With regard to test problems that have not exact solutions, we consider two strategies for checking the 
stability of time difference scheme and for survey the convergence of the fully discrete scheme. The results of 
numerical experiments confirm the accuracy and efficiency of the presented scheme. 

1. Introduction 

As mentioned in [1] , Mathematical models of basic flow equations 
describing unsteady transport problems consist of system of nonlinear 
parabolic and hyperbolic PDEs. The coupled Burgers’ equations [2] form 

an important class of such PDEs. This class is related to a large number of 
physical problems such as the phenomena of turbulence and supersonic 
flow, flow of a shock wave traveling in a viscous fluid, sedimentation 
of two kinds of particles in fluid suspensions under the effect of grav- 
ity, acoustic transmission, traffic and aerofoil flow theory, as well as a 
prerequisite to the Navier-Stokes equations [2–6] . 

The present paper considers the nonlinear coupled Burgers’ equation 
in two dimensions as follows: ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝜕𝑢 ( x , 𝑡 ) 
𝜕𝑡 

+ 𝑢 ( x , 𝑡 ) 𝜕𝑢 ( x , 𝑡 ) 
𝜕𝑥 

+ 𝑣 ( x , 𝑡 ) 𝜕𝑢 ( x , 𝑡 ) 
𝜕𝑦 

= 𝛼Δ𝑢 ( x , 𝑡 ) , 

𝜕𝑣 ( x , 𝑡 ) 
𝜕𝑡 

+ 𝑢 ( x , 𝑡 ) 𝜕𝑣 ( x , 𝑡 ) 
𝜕𝑥 

+ 𝑣 ( x , 𝑡 ) 𝜕𝑣 ( x , 𝑡 ) 
𝜕𝑦 

= 𝛽Δ𝑣 ( x , 𝑡 ) , 

x = ( 𝑥, 𝑦 ) ∈ Ω ⊂ ℝ 

2 , 𝑡 ∈ [0 , 𝑇 ] , 

(1) 

with initial conditions 

𝑢 ( x , 0) = 𝑢 0 ( x ) , 𝑣 ( x , 0) = 𝑣 0 ( x ) , x ∈ Ω, (2) 

and Dirichlet boundary conditions 

𝑢 ( x , 𝑡 ) = ℎ 1 ( x , 𝑡 ) , 𝑣 ( x , 𝑡 ) = ℎ 2 ( x , 𝑡 ) , x ∈ 𝜕Ω, 𝑡 > 0 , (3) 
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where 𝛼 and 𝛽 are positive viscosity parameters which correspond to 
an inverse of Reynolds number Re (if 𝛼 = 𝛽, then 𝛼 = 𝛽 = 1∕ 𝑅𝑒 ), 𝑢 ( x , 𝑡 ) 
and 𝑣 ( x , 𝑡 ) are the velocity components in two dimension; u 0 , v 0 , h 1 and 
h 2 are known functions; 𝜕 u / 𝜕 t is unsteady term, u 𝜕 u / 𝜕 x is the nonlinear 
convection term, Δ is the Laplacian differential operator and 𝛼Δ𝑢 ( x , 𝑡 ) is 
diffusion term. 

Exact solution for the special cases of the two dimensional coupled 
Burgers’ equations is given by Fletcher [7] using Hopf–Cole transforma- 
tion. Much work has been done on developing numerical methods for 
solving the numerical solution of nonlinear coupled Burgers’ equation. 
Some examples are described below. The authors of [8] studied non- 
linear Burgers’ equation by polynomial differential quadrature method. 
The authors of [1] presented a meshless local radial basis functions col- 
location method (LRBFCM) to the numerical solution of the transient 
nonlinear coupled Burgers’ equations with Dirichlet and mixed bound- 
ary conditions. Mohammadi et al. [9] employed Galerkin-reproducing 
kernel method for solving the 2D nonlinear coupled Burgers’ equations 
having Dirichlet and mixed boundary conditions. Shukla et al. [10] stud- 
ied the numerical solution of two dimensional nonlinear coupled viscous 
Burger equations through modified cubic B-spline differential quadra- 
ture method. Tamsir et al. [11] developed a new differential quadra- 
ture method ”exponential modified cubic B-spline differential quadra- 
ture method ” on one and two dimensional nonlinear Burgers’ equations 
having Dirichlet boundary conditions. Stability analysis of the proposed 
algorithm is also done by using matrix stability analysis method. The 
authors of [12] introduced two new modified fourth-order exponential 
time differencing Runge–Kutta (ETDRK) schemes in combination with 
a global fourth-order compact finite difference scheme (in space) for 
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direct integration of nonlinear coupled viscous Burgers’ equations in 
their original form with out using any transformations or linearization 
techniques. 

The main shortcoming of mesh-based methods such as the finite ele- 
ment method (FEM) [13] , the finite volume method (FVM) [14] and the 
boundary element method (BEM) [15] is that these numerical methods 
rely on meshes or elements. In the two last decades, in order to overcome 
the mentioned difficulties some techniques so-called meshless methods 
have been proposed [16,17] . A brief review of the meshless method has 
been studied in [18] . 

In spite of great benefits in using the meshless weak form methods, 
there are some limitations. For example, the complicated nature of the 
non-polynomial shape functions may be computationally expensive to 
implement in a numerical integration scheme. On the other hand, some 
methods such as those that are based on moving least squares (MLS) 
and RBFs, need to determine a shape parameter which plays the im- 
portant role in the accuracy of the methods. Furthermore, the resul- 
tant linear systems might be ill-conditioned and to overcome this defect, 
some regularization methods are needed. In the meshless method based 
on strong form, such as Kansa’s method, this RBF collocation approach 
is inherently meshless, easy-to-program, and mathematically very sim- 
ple to learn, but its fundamental flaw is un-stability because of the use 
of the global strong form. To overcome these shortages, we propose a 
new spectral meshless radial point interpolation (SMRPI) method which 
is based on meshless radial point interpolation and spectral colloca- 
tion techniques [19–23] . In the SMRPI method, the point interpolation 
method by the help of radial basis functions is proposed to construct 
shape functions which have Kronecker delta function property and are 
used as basis functions in the frame of the SMRPI. Based on the spec- 
tral methods, evaluation of high-order derivatives of given differential 
equation is easy by constructing and using operational matrices. The 
SMRPI method does not require any kind of integration locally over 
small quadrature domains nor regularization techniques. Therefore, the 
computational cost of the SMRPI method is less expensive. 

The outline of this paper is as follows: The time discrete scheme 
for implementation of the SMRPI is given in Section 2 . In Section 3 , we 
introduce the spectral meshless radial point interpolation scheme briefly 
and shape functions are constructed. The implementation of the SMRPI 
for time discrete equation is given in Section 4 . In Section 5 , to show the 
accuracy and efficiency of the proposed method some numerical results, 
are investigated. Finally a conclusion is given in Section 6 . 

2. Time discrete scheme 

Let us define 

𝑡 𝑘 = 𝑘𝛿𝑡, 𝑘 = 0 , 1 , ..., 𝑀, 

where 𝛿𝑡 = 𝑇 ∕ 𝑀 is the step size of time variable. In this section, we dis- 
cretize the time variable using forward finite difference relation for the 
first order derivatives on time variable with the Crank–Nicolson scheme, 
appropriately, as follows 

𝜕𝑢 ( x , 𝑡 ) 
𝜕𝑡 

≅ 𝑢 𝑘 +1 ( x ) − 𝑢 𝑘 ( x ) 
𝛿𝑡 

, (4) 

Δ𝑢 ( x , 𝑡 ) ≅ 1 
2 
(
Δ𝑢 𝑘 +1 ( x ) + Δ𝑢 𝑘 ( x ) 

)
, (5) 

where 𝑢 𝑘 +1 ( x ) is approximate solution at the point ( x , 𝑡 𝑘 +1 ) . Applying the 
above approximation and impose them to the original Eq. (1) , we are 
conducted to the following time discrete equation: 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑢 𝑘 +1 ( x ) − 𝑢 𝑘 ( x ) 
𝛿𝑡 

+ 𝑢 𝑘 ( x ) 𝜕𝑢 
𝑘 ( x ) 
𝜕𝑥 

+ 𝑣 𝑘 ( x ) 𝜕𝑢 
𝑘 ( x ) 
𝜕𝑦 

= 

𝛼

2 
(
Δ𝑢 𝑘 +1 ( x ) + Δ𝑢 𝑘 ( x ) 

)
, 

𝑣 𝑘 +1 ( x ) − 𝑣 𝑘 ( x ) 
𝛿𝑡 

+ 𝑢 𝑘 ( x ) 𝜕𝑣 
𝑘 ( x ) 
𝜕𝑥 

+ 𝑣 𝑘 ( x ) 𝜕𝑣 
𝑘 ( x ) 
𝜕𝑦 

= 

𝛽

2 
(
Δ𝑣 𝑘 +1 ( x ) + Δ𝑣 𝑘 ( x ) 

)
. 

(6) 

Then, Eq. (6) can be rewritten as 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝜆𝑢 𝑘 +1 ( x ) − 𝛼Δ𝑢 𝑘 +1 ( x ) = 𝜆𝑢 𝑘 ( x ) + 𝛼Δ𝑢 𝑘 ( x ) − 2 𝑢 𝑘 ( x ) 𝜕𝑢 

𝑘 ( x ) 
𝜕𝑥 

− 2 𝑣 𝑘 ( x ) 𝜕𝑢 
𝑘 ( x ) 
𝜕𝑦 

, 

𝜆𝑣 𝑘 +1 ( x ) − 𝛽Δ𝑣 𝑘 +1 ( x ) = 𝜆𝑣 𝑘 ( x ) + 𝛽Δ𝑣 𝑘 ( x ) − 2 𝑢 𝑘 ( x ) 𝜕𝑣 
𝑘 ( x ) 
𝜕𝑥 

− 2 𝑣 𝑘 ( x ) 𝜕𝑣 
𝑘 ( x ) 
𝜕𝑦 

, 

(7) 

where 𝜆 = 2∕ 𝛿𝑡 . 

3. Radial point interpolation 

In this section our purpose is to obtain shape function in SMRPI ap- 
proach. Since we use the radial basis function of conditionally positive 
definite to build the shape functions, we remember the following defi- 
nition and theorem from [24] . 

Definition 1. A continuous function 𝜑 ∶ ℝ 

𝑑 → ℂ is said to be condition- 
ally positive semi-definite of order m (i.e. to have conditional positive 
deniteness of order m ) if, for all 𝑁 ∈ ℕ , all pairwise distinct centers 
𝑥 1 , ..., 𝑥 𝑁 

∈ ℝ 

𝑑 , and all c = [ 𝑐 1 , ..., 𝑐 𝑁 

] 𝑡𝑟 ∈ ℂ 

𝑁 satisfying 

𝑁 ∑
𝑗=1 

𝑐 𝑗 𝑝 ( 𝑥 𝑗 ) = 0 , 

for all complex-valued polynomials of degree less than m, the quadratic 
form 

𝑁 ∑
𝑗=1 

𝑁 ∑
𝑘 =1 

𝑐 𝑗 ̄𝑐 𝑘 𝜑 ( 𝑥 𝑗 − 𝑥 𝑘 ) 

is nonnegative. 𝜑 is said to be conditionally positive definite of order m 

if the quadratic form is positive, unless c is zero. 

Theorem 1. (Micchelli) Suppose that 𝜑 ∈C [0, ∞) ∩C 

∞(0, ∞) is given. 

Then the function 𝜙 = 𝜑 ( ‖. ‖2 2 ) is conditionally positive semi-definite of order 

𝑚 ∈ ℕ 0 on every ℝ 

𝑑 if and only if (−1) 𝑚 𝜑 ( 𝑚 ) is completely monotone on (0, 
∞) . 

Now, one can find many conditionally positive definite functions by 
using this theorem. For an example, the thin-plate or surface splines 
𝜑 ( 𝑟 ) = (−1) 𝑘 +1 𝑟 2 𝑘 log ( 𝑟 ) are conditionally positive definite of order 𝑚 = 

𝑘 + 1 on every ℝ 

𝑑 . Consider a continuous function 𝑢 ( x ) defined in a do- 
main Ω ⊂ ℝ 

2 , which is represented by a set of field nodes. The 𝑢 ( x ) at a 
point of interest x is approximated in the form of 

𝑢 ( x ) = 

𝑛 ∑
𝑖 =1 

𝑅 𝑖 ( x ) 𝑎 𝑖 + 

𝑛𝑝 ∑
𝑗=1 

𝑃 𝑗 ( x ) 𝑏 𝑗 = R 

𝑡𝑟 ( x ) a + P 

𝑡𝑟 ( x ) b , (8) 

where 𝑅 𝑖 ( x ) is a radial basis function (RBF), n is the number of RBFs, 
𝑃 𝑗 ( x ) is monomial in the space coordinate x , and np is the number of 
polynomial basis functions. It should be noticed that the additional poly- 
nomials are not necessary if the RBF is strictly positive definite. Thus, 
when the TPS is used for interpolation, the polynomial terms should be 
employed to avoid the singularity. Coefficients a i and b j are unknown 
which should be determined. In order to determine a i and b j in Eq. (8) , 
a support domain is formed for the point of interest at x , and n field 
nodes are included in the support domain (support domain is usually 
a disk with radius r s ). Coefficients a i and b j can be determined by en- 
forcing Eq. (8) to be satisfied at these n nodes surrounding the point of 
interest x . Therefore, by the idea of interpolation, Eq. (8) is converted 
to the following form: 

𝑢 ( x ) = 𝚽𝑡𝑟 ( x ) U 𝑠 = 

𝑛 ∑
𝑖 =1 

𝜙𝑖 ( x ) 𝑢 𝑖 . (9) 

It is significant that the RPIM shape functions have the Kronecker 
delta function property, that is 

𝜙𝑖 ( x 𝑗 ) = 

{ 

1 , 𝑖 = 𝑗, 𝑗 = 1 , 2 , ..., 𝑛, 
0 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1 , 2 , ..., 𝑛 . (10) 
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