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a b s t r a c t 

In this paper, the boundary element method is reformulated using new complex Fourier shape functions for solv- 

ing two-dimensional (2D) elastostatic and dynamic problems. For approximating the geometry of boundaries 

and the state variables (displacements and tractions) of Navier’s differential equation, the dual reciprocity (DR) 

boundary element method (BEM) is reconsidered by employing complex Fourier shape functions. After enriching 

a class of radial basis functions (RBFs), called complex Fourier RBFs, the interpolation functions of a complex 

Fourier boundary element framework are derived. To do so, polynomial terms are added to the functional ex- 

pansion that only employs complex Fourier RBF in the approximation. In addition to polynomial function fields, 

the participation of exponential and trigonometric ones has also increased robustness and efficiency in the in- 

terpolation. Another interesting feature is that no Runge phenomenon happens in equispaced complex Fourier 

macroelements, unlike equispaced classic Lagrange ones. In the end, several numerical examples are solved to 

illustrate the efficiency and accuracy of the suggested complex Fourier shape functions and in comparison with 

the classic Lagrange ones, the proposed shape functions result in much more accurate and stable outcomes. 

1. Introduction 

Elastostatics and dynamics contain an extensive range of phenom- 

ena in engineering and physical problems including force equilibrium 

of special structures and analysis of structures subjected to earthquake, 

vibratory motor, collision and explosion loads. In these cases, the wave 

propagation is expressed by a governing linear partial differential equa- 

tion associated with suitable initial and boundary conditions. In gen- 

eral, obtaining the solution of elastostatic and dynamic problems for 

the sake of analysis and design can be difficult and laborious when ana- 

lytical approaches are used. Moreover, it may even become impossible 

when a little complexity happens in boundary conditions. Therefore, 

it seems reasonable in most practical engineering cases to solve them 

numerically. Among the numerical methods considered significantly by 

researchers, boundary element method (BEM) [1,2] can be mentioned. 

As it is obvious from its name, only the boundary needs to be discretized 

in this method, not the domain. Thus, fewer unknown parameters need 

to be stored and less computational cost and storage space will be spent. 

For problems such as stress concentration or infinite domains, BEM can 

be applied to achieve better accuracy in comparison with finite element 

method (FEM). Many usages of BEM in solving problems related to buck- 
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ling, optimization, crack, wave propagation, and etc. are reported in the 

literature. [3–11] 

According to the literature, three formulations known as the Laplace 

transform, the time domain (TD), and the domain integral techniques 

exist for solving elastodynamic problems with BEM [1,2] . However, the 

first two methods are with mathematical complexities and the third one 

requires domain integration, which are some challenges to be faced in 

these methods. In the work of Nardini and Brebbia [12–14] , the well- 

known dual reciprocity method (DRM) was introduced to overcome 

these problems. With the introduction of DRM, a significant develop- 

ment happened in the BEM analysis of time-dependent problems. One 

of the advantages of DRM is benefiting from less computational cost 

than other methods (like TDM) due to its ability in using the simple 

Green’s function of elastostatics for analyzing elastodynamic problems. 

Various usages of the DRM for solving a broad range of problems are 

reported in the literature. In the works of Dehghan et al. [15–19] , this 

method was implemented for solving various equations and problems 

including stochastic partial differential equations, linear Helmholtz and 

semi linear Poisson’s equations, and etc. The DRM was applied in the 

solution of free and force vibration problems by Rashed et al. [20–24] . 

Hamzehei Javaran et al. [25–30] applied DRM for the analysis of prob- 

https://doi.org/10.1016/j.enganabound.2018.07.012 

Received 3 December 2017; Received in revised form 27 June 2018; Accepted 29 July 2018 

0955-7997/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.enganabound.2018.07.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enganabound
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2018.07.012&domain=pdf
mailto:nkhaji@modares.ac.ir
https://doi.org/10.1016/j.enganabound.2018.07.012


S. Hamzehei-Javaran, N. Khaji Engineering Analysis with Boundary Elements 95 (2018) 222–237 

lems such as elastodynamic, potential and etc. For other sample usages, 

see Refs. [31–39] . 

In this study, BEM is developed for solving 2D elastostatic and dy- 

namic problems using new class of shape functions derived from com- 

plex Fourier radial basis function (RBF). In general, two types of RBF 

are reported in the literature: oscillatory and non-oscillatory. For ex- 

ample, the conical functions [31,32] , the thin plate splines [33–35] , 

the Gaussian functions [20] , multiquadrics [23,24,35] , inverse multi- 

quadric [29] , and compact supported functions [21,22,37,38] are non- 

oscillatory RBFs, while real and complex Fourier [25–27] , J-Bessel 

[28] and spherical Hankel RBF [30] are oscillatory ones. In this pa- 

per, an element based interpolation function is proposed by enriching 

an oscillatory class of RBFs based on complex Fourier functions in natu- 

ral coordinates. The relation of suggested shape function corresponding 

to a complex Fourier element with arbitrary number of nodes n is ex- 

plicitly derived. These shape functions are able to satisfy exponential 

and trigonometric function fields as well as polynomial ones. Moreover, 

no Runge phenomenon happens in the complex Fourier macroelements. 

For showing the high robustness of the proposed shape functions in mod- 

eling non-smooth boundaries, a boundary with four non-differentiable 

points is reproduced by a four-node complex Fourier element. For eval- 

uating the efficiency of the present shape functions, their results are 

compared with analytical and classic Lagrange shape functions as well 

as other numerical methods reported in the literature through several 

numerical examples. It can be understood from their results that the 

proposed method is more accurate and stable using fewer degrees of 

freedom, and finally, less computational cost. 

2. Dual reciprocity method formulation 

The equation of DRM formulation for dynamic analysis of a general 

2D body with a domain Ω and a boundary Γ, where x and 𝝃 respectively 

represent the field and source points, can be derived as below (for more 

details see Refs. [1,2,12–14] ): 

𝑐 lk ( 𝝃) 𝑢 𝑘 ( 𝝃) + ∫Γ 𝑝 
∗ 
lk 
𝑢 𝑘 𝑑Γ

= ∫Γ 𝑢 
∗ 
lk 
𝑝 𝑘 𝑑Γ + 

𝑀 ∑
𝑚 =1 

[ 
𝑐 lk ( 𝝃) Ψ𝑚 kj 

+ ∫Γ 𝑝 
∗ 
lk 
Ψ𝑚 

kj 
𝑑Γ − ∫Γ 𝑢 

∗ 
lk 
𝜂𝑚 

kj 
𝑑Γ
] 
𝛼𝑚 
𝑗 

(1) 

in which, u k and p k denote the displacement and traction fields, respec- 

tively. Moreover, 𝑢 ∗ 
𝑙𝑘 

and 𝑝 ∗ 
𝑙𝑘 

are the fundamental solutions of displace- 

ments and tractions [1] . In addition, c lk represents the jump terms, and 

l and k are indices. Furthermore, 𝜓 𝑚 
𝑗𝑙 

and 𝜂𝑚 
𝑗𝑙 

respectively indicate the 

fictitious displacement and traction fields derived from the concept of 

particular solutions for an infinite domain without boundary conditions 

employing a set of coefficients 𝛼𝑚 
𝑗 

and a class of RBFs. 

Now, the numerical solution of the boundary integral equation ( Eq. 

(1) ) with no domain integration is accessible. In the following section, 

a new approximate approach consisting of present shape functions and 

therefore, new boundary elements are proposed. 

3. Basis of construction of complex Fourier elements 

The DRM is considered as one of the branches of the method of par- 

ticular solutions (MPS). In other words, in the approximation of inertia 

term in elastodynamic problems, MPS is known as DRM. In general, 

the MPS is useful in solving non-homogeneous partial differential equa- 

tions, Lu = f . Its main idea is the expansion of non-homogeneous term 

f by its values in interpolation nodes so that a particular solution can 

be obtained [27] , which can be done by radial basic functions (RBFs) 

approximation. Thus, the governing equation is reduced to a homoge- 

neous one. According to the literature about the process of interpolation 

by RBFs, no connectivity exists between interpolation nodes as elements. 

Now this idea comes to mind that is it possible to interpolate the state 

variables by using BEM that uses elements for interpolation and benefit 

from the advantages of RBFs as well? 

Fig. 1. A n -node boundary element with arbitrary coordinates 𝜉1 , 𝜉2 ,..., 𝜉n in the 

natural coordinate system. 

The complex Fourier functions have been already implemented by 

the authors [27] as RBF for the interpolation of non-homogenous terms 

of Navier’s equation (inertia term, not the state variables) and as shape 

function in an element-based framework with only 3-node elements for 

the approximation of state variables of potential problems (potentials 

and fluxes) with remarkable outcomes [26] . According to the oscillat- 

ing and decaying features of these functions, a good agreement between 

them and the nature of dynamic waves in elastodynamic problems may 

be established. This fact can be easily seen in the numerical results 

of Section 6 . Here, it is tried to use complex Fourier in an element- 

based framework with arbitrary n -node elements for the approximation 

of the state variables of Navier’s equation (displacements and tractions). 

Therefore, the idea of enriching complex Fourier RBF in the natural co- 

ordinates mapping with a number of arbitrary nodes is developed in this 

research. 

3.1. Enrichment of complex Fourier RBF 

This section explains the enrichment steps of the desired RBF for a 

n -node boundary element with arbitrary coordinates 𝜉1 , 𝜉2 ,..., 𝜉n . To do 

so, polynomial terms are joined to the functional expansion that only 

employs RBF in the approximation 

𝑢 ℎ ( 𝑥 ) = 

𝑛 ∑
𝑖 =1 
𝑅 𝑖 ( 𝑟 ) 𝑎 𝑖 + 

𝑚 ∑
𝑗=1 
𝑃 𝑗 ( 𝒙 ) 𝑏 𝑗 = 𝑹 

𝑇 ( 𝑟 ) 𝒂 + 𝑷 𝑇 ( 𝒙 ) 𝒃 (2) 

in which, n and m denote the number of nodes and basis polynomial 

terms, respectively. Furthermore, r and x indicate the Euclidean norm 

among data points, and coordinates of data points, respectively. The 

definition of other parameters is available in Ref. [26] . Moreover, 

𝚽( 𝒙 ) = 𝑹 

𝑇 ( 𝑟 ) 𝑺 𝑎 + 𝑷 𝑇 ( 𝒙 ) 𝑺 𝑏 (3) 

where, 

𝑺 𝑏 = 

[
𝑷 𝑇 
𝑚 
𝑹 

−1 
𝑄 
𝑷 𝑚 

]−1 
𝑷 𝑇 
𝑚 
𝑹 

−1 
𝑄 
, 𝑺 𝑎 = 𝑹 

−1 
𝑄 

− 𝑹 

−1 
𝑄 
𝑷 𝑚 𝑺 𝑏 (4) 

Now, it is tried to employ the aforementioned approach in a n -node 

element in a natural coordinate system 𝜉, to be used in BEM ( Fig. 1 ). 

The desired RBF is proposed as the equation below [27] : 

𝑅 ( 𝑟 ) = 𝛼𝑒 𝑖𝜔𝑟 (5) 

where, 𝛼 and 𝜔 denote some constants (the so-called shape pa- 

rameters) that may be chosen to increase the accuracy [27] and 

e i 𝜔 r = cos ( 𝜔 r ) + i sin ( 𝜔 r ) represents the complex-real exponential func- 

tion. The R ( r ) and P ( 𝜉) vectors for the boundary element illustrated in 

Fig. 1 are represented as below: 

𝑹 ( 𝑟 ) = 𝛼

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑒 𝑖𝜔 |𝜉− 𝜉1 |
𝑒 𝑖𝜔 |𝜉− 𝜉2 |

. 

. 

. 

𝑒 𝑖𝜔 |𝜉− 𝜉𝑛 |

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
(6) 
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