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a b s t r a c t 

This paper combines a displacement discontinuity method (DDM) for elasticity and an indirect boundary element 

method (IBEM) for heat conduction to investigate three dimensional thermal displacements and stresses, such 

as those around an underground storage cavern. The thermal displacements and stresses due to temperature 

change are expressed in terms of a thermal displacement potential function. For a constant point heat source, we 

present a derivation for solution of the thermal displacement potential function and the solution is the same as 

found in literature. A hybrid scheme with semi-analytical integration and a direct numerical integration are used 

to integrate the thermal displacement potential function due to a constant heat source on a triangular region. 

The hybrid scheme is used to overcome a difficulty arising with the semi-analytical integration for points whose 

projection on the integration plane is close to the vertices of the triangle. The combined IBEM with the hybrid 

integration scheme is first verified with the analytical solution for an infinite elastic body with a spherical cavity. 

The results agree well, although differences are observed in the early stages of simulation. Then the method is 

used to simulate the deformation around a liquefied natural gas underground storage cavern. 

1. Introduction 

Temperature changes occur constantly in any non-controlled envi- 

ronments. In any deformable medium, changes in the surrounding tem- 

perature affect deformation and stress distribution. The deformation of 

some materials is more sensitive to temperature changes than in others, 

and in some situations the temperature variation can be very large. The 

possible effects of temperature change must therefore be considered in 

any applications with such conditions. 

Thermal stress due to temperature change must be considered in 

many engineering applications, such as mechanical engineering, where 

friction between two parts of a machine could change the tempera- 

ture. In turn, this alters the deformation of the parts, affecting the ma- 

chine’s operation. Electronic devices may be very sensitive to tempera- 

ture change, because current flow can affect the temperature, causing 

deformation. Thermal stress has large effects in many civil and geotech- 

nical engineering applications, particularly in underground energy stor- 

age facilities. In geothermal energy engineering [1,2] , where under- 

ground heat is transferred by flowing water to the ground’s surface, 

temperature change affects the rock deformation. Temperature changes 

can be due to heat release, which increases temperatures, as well as heat 

absorption, which reduces temperatures. For example, in underground 

nuclear disposal storage [3] , temperature rises can be caused by chemi- 

cal reactions or radiation, while in underground sequestration of carbon 
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dioxide [4] , injection of carbon dioxide could cool down the tempera- 

ture of rock formation. In underground storage facilities for liquefied 

natural gas (LNG) [5] , the temperature around the facilities could rise 

and fall over time with the flow of the LNG. Thermal energy can also be 

collected and stored when it is available and then used when needed. 

For example, hot water can be collected and stored in summer and then 

used in winter for heating purpose, or ice is collected and stored in win- 

ter and used in summer for cooling. 

In some of these applications, the stability of the storage facilities 

is extremely important. Instability is mainly due to fracture initiation, 

propagation and coalescence. Thermal effect can make large contribu- 

tion to the instability. For large-scale applications, physical experiments 

are very difficult, and usually impossible. Thus, numerical simulations 

have become vital tools for the design process. There are many numer- 

ical studies of thermal effects in various engineering applications. Just 

give a few examples. Numerical simulations have been undertaken for 

nuclear waste storage [5–8] , underground sequestration of carbon diox- 

ide [9,10] , geothermal energy [11–15] and LNG underground storage 

facilities [16,17] . 

Among various numerical methods for deformation analysis, the dis- 

placement discontinuity method (DDM), an indirect boundary element 

method (IBEM), has an advantage over other numerical methods, es- 

pecially for problems with cracks, in that a crack is discretised as one 

entity, reducing the number of final linear equations required to solve. 
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Since Crouch [18] introduced DDM for study of cracks in two-dimension 

case, DDM has been studied and extended to different materials and to 

three dimensional cases. It has been used widely in numerical analysis 

of many engineering applications. We do not intend to give a detailed 

review of DDM, in steady, we just mention a few of the researchers in 

this field, for example, Crouch and Starfield [19] and Shen et al. [20] in 

two-dimensional cases and Wiles and Curran [21] , Kuriyama and Mizuta 

[22] , Shou et al. [23] , Zhang et al. [24] and Shi et al. [25] in three- 

dimensional cases. 

To utilise the advantage of less number of equations of DDM in simu- 

lations that take account of the thermal effect, particular for crack prop- 

agation, it would be better for the temperature field and the thermal 

effects on displacement and stress states to be solved using a similar 

indirect method. For two-dimensional applications, Shen et al. [20] de- 

veloped the fracture propagation code (FRACOD) based on DDM, which 

can solve coupled thermo–hydro–mechanical problems and have been 

employed in simulations of many engineering applications. The ficti- 

tious heat source is treated as the basic variable for thermal effect. Ghas- 

semi and co-workers [13–15,26,27] combined DDM and IBEMs for heat 

source and fluid pressure for three-dimensional poro-elastic medium. In 

most of the IBEMs for thermal field, fictitious heat strengths on bound- 

ary elements are taken as the basic variables, which are solved first from 

linear equations and then used to calculate temperature, displacement 

and stress at other points. Zhao et al. [28] used fictitious temperature 

discontinuity as the basic variable, instead of fictitious heat strength, 

combined with DD, to investigate the thermal effects. Most recently, 

IBEMs combined with some new techniques have been used for heat 

conduction, thermoelasticity and more general potential problems [29–

31,47] . With BEMs, accurate computation of singular integrals and/or 

nearly singular integrals are crucial. The techniques used by Zhang et 

al. [32] are very useful. 

We have been developing a DDM-based code FRACOD 

3D [25] for 

three-dimensional problems. To incorporate the thermal effect in the 

code, we need expressions for displacements and stresses due to 

the heat source continuously acting on a planar triangular element. At 

the beginning, we were not able to find the final expressions, so we fol- 

lowed steps found in literature and derived an analytic expression for 

a three-dimensional thermal displacement potential function due to a 

constant heat source at a point in an infinite elastic body, which can 

be directly used to compute displacements and stresses. Then we were 

reminded that the expression was given in Nowacki’s book [33] . After 

check, we found that the derivation in [33] is different from our proce- 

dure. So we think it may be worth to re-present the derivation here. 

As in the DDM, it requires to integrate the expression of thermal 

displacement potential function due to point heat source over the (tri- 

angular) elements. A semi-analytic integration was first used for this 

purpose. The semi-analytical integration technique has been used by 

many researchers and it uses a polar coordinate system transformation 

for the two-dimensional integration, with integration with respect to 

radial variable expressed analytically. It eliminates the singularity that 

occurs when the integrand is evaluated on the triangle. However, we 

found that the integral values for vertices of the triangle and for points 

nearby computed with the semi-analytical scheme could be very differ- 

ent. This affects the accuracy of the derivatives of the potential function, 

and therefore accuracy of displacements and stresses, if they are evalu- 

ated by finite difference method at these points. This difficulty can be 

overcome by hybrid scheme of using direct numerical integration for 

these points and the semi-analytical scheme for other points away from 

the vertices. Rong et al. [34] reported the similar problems of the polar 

coordinate system transformation. 

The paper is arranged as follows. In Section 2 , we re-derive the ex- 

pression for a thermal displacement potential function due to constant 

heat source acting at a point and on a planar region in an infinite, elas- 

tic, three-dimensional body. A hybrid scheme of a semi-analytical in- 

tegration and a direct numerical integration on a triangle is shown in 

Section 3 to integrate the displacement potential function and temper- 

ature field. In Section 4 , the numerical scheme of an IBEM for a tem- 

perature field and DDM for an elastic field with the thermal effect is 

outlined. Simulations of a verification example and a real underground 

LNG storage cavern are shown in Section 5 . Our conclusions are given 

in Section 6 . 

2. Thermal displacements and stresses due to a heat source on a 

triangle 

Temperature variation in elastic medium will change stresses and 

displacements within the medium. The temperature variation is due to 

heat source variation; therefore, variation of the heat source changes 

the stresses and displacements. In this section, we formulate the rela- 

tionships between the heat source and the stresses and displacements. 

In particular, for application of the three-dimensional DDM, we formu- 

late the relationships for a heat source on a triangular element. 

2.1. Thermal displacements and stresses due to a constant point heat source 

It is assumed that conduction is the only heat transfer mechanism for 

the temperature change. Thus, the temperature change T is governed by 

the heat conduction equation: 

𝜒∇ 

2 𝑇 = 𝜒

( 

𝜕 2 

𝜕 𝑥 2 
+ 

𝜕 2 

𝜕 𝑦 2 
+ 

𝜕 2 

𝜕 𝑧 2 

) 

𝑇 = 

𝜕𝑇 

𝜕𝑡 
(1) 

where 𝜒 = k / 𝜌c is the thermal diffusivity of the solid material [35] , with 

k , 𝜌, c being thermal conductivity, mass density and specific heat ca- 

pacity of the material, respectively; x, y, z and t represent the Cartesian 

coordinates of point and time, respectively. With thermal boundary con- 

ditions, the temperature field can be determined independently from the 

elastic deformation. 

With the thermal elasticity constitutive relations [36,37] : 

𝜎𝑖𝑗 = 2 𝐺 𝜀 𝑖𝑗 + 𝜆𝜀 𝑘𝑘 𝛿𝑖𝑗 − 𝛽𝑇 𝛿𝑖𝑗 , ( 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 ) (2) 

the equilibrium equations of the elastic medium are: 

𝐺 𝑢 𝑖,𝑗𝑗 + ( 𝜆 + 𝐺 ) 𝑢 𝑗 ,𝑗 𝑖 = 𝛽𝑇 ,𝑖 , ( 𝑖, 𝑗 = 𝑥, 𝑦, 𝑧 ) (3) 

in terms of displacement field u i . In Eqs. (2) and (3) , G is shear modu- 

lus and 𝜆 is a Lame’s constant of the elastic body; 𝜀 kk = 𝜀 xx + 𝜀 yy + 𝜀 zz is 

the volumetric strain; and 𝛽 = (3 𝜆+ 2 G ) 𝛼/3, with 𝛼 being the volumetric 

thermal expansion coefficient of the elastic body under constant stress. 

Note that the volumetric thermal expansion coefficient is three times the 

value of the linear thermal expansion coefficient, used in some analyses; 

𝛿ij is the Kronecker delta symbol; the subscript comma denotes deriva- 

tives with respect to coordinate; and the conventional summation over 

repeating index is used. In the constitutive relations ( 2 ), the strains are 

the classic ones, which are composed of partial derivatives of displace- 

ment components. 

The general complete solution of ( 3 ) for the displacements has two 

parts: the complementary solution of the corresponding homogeneous 

equations, and a particular solution of the inhomogeneous equations ( 3 ) 

due to the temperature change T . Just from the governing equation’s ( 3 ) 

point of view, the complementary solution can contain some arbitrary 

constants or functions, while the particular solution should satisfy the 

inhomogeneous equations ( 3 ) without any arbitrariness. The constants 

or functions in the complementary solution should satisfy the boundary 

conditions by the complete solution. In the following, we first consider 

the particular solution of equations in ( 3 ), i.e. the thermal displacements 

and stresses. 

To determine the thermal displacement field due to the temperature 

change or the heat source, i.e. the particular solution of Eq. (3) , a ther- 

mal displacement potential function, Φ, is introduced such that [38] : 

𝑢 𝑖 = 

𝜕Φ
𝜕 𝑥 𝑖 

(4) 

With the thermal displacement potential and temperature change, 

the thermal stresses are given by: 

𝜎𝑖𝑗 = 2 𝐺{ Φ,𝑖𝑗 − 𝐾 ℎ 𝑇 𝛿𝑖𝑗 } (5) 
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