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a b s t r a c t 

In this paper we consider Trefftz methods which are based on functions defined by single layer or double layer 
potentials, integrals of the fundamental solution, or their normal derivative, on cracks. These functions are called 
cracklets , and satisfy the partial differential equation, as long as the crack support is not placed inside the domain. 
A boundary element method (BEM) interpretation is to consider these cracks as elements of the original boundary, 
in a direct BEM approach, or elements of an artificial boundary, in an indirect BEM approach. In this paper we 
consider the cracklets just as basis functions in Trefftz methods, as the method of fundamental solutions (MFS). We 
focus on the 2D Laplace equation, and establish some comparisons and connections between these methods with 
cracklets and standard approaches like the BEM, indirect BEM, and the MFS. Namely, we propose the enrichment 
of the MFS basis with the cracklets. Several numerical simulations are presented to test the performance of the 
methods, in particular comparing the results with the MFS and the BEM. 

1. Introduction 

The solution of boundary value problems (BVP) for partial differen- 
tial equations (PDEs) benefits from the fact that for homogeneous linear 
PDEs, it is possible to write them as a linear combination of basis func- 
tions that satisfy the PDE, reducing the BVP to the fitting of the bound- 
ary conditions. This is a general context of the Trefftz methods in its 
different variants (e.g. [20] ), and it has the advantage that no meshing 
procedure is needed for the domain. 

The Boundary Element Method (BEM) has also a long history of ap- 
plication (e.g. [12] ) and it may be included in the class of Trefftz meth- 
ods, as it relies on boundary potentials that are solutions of the PDE 
inside the domain. The indirect BEM (IBEM) is another Trefftz variant, 
where the boundary potentials are considered on some artificial bound- 
ary surrounding the original one. The use of an artificial boundary is 
also the context of application of another Trefftz method - the method 
of fundamental solutions (MFS), no longer with boundary potentials, 
but simply as the location of point sources, i.e. fundamental solutions 
centered on source points, that are located on some artificial boundary 
(e.g. [2,13,14] ). 

A connection between some of these approaches was already pointed 
out in [10] , and in this paper we explore this known connection further, 
using the concept of cracklets (e.g. [1] ). Since the single and double layer 
potentials are defined on a boundary, which is decomposed in multiple 
boundary elements, we consider the elements of the boundary them- 
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selves to be cracks (or screens), and the cracklets are therefore defined 
as single or double layers over the support of a crack. If the boundary 
elements are seen as the union of cracks, then the BEM formulation may 
be understood with the use of cracklets on the boundary, and the IBEM 

formulation with the use of cracklets on some artificial domain. 
However since these cracklets are themselves solutions of the PDE, 

with an appropriate behavior at infinity, they might be understood as 
a Trefftz basis, and we propose that they may be used with no direct 
connection to a boundary (artificial or original). In Section 3.5 we prove 
a density theorem and its corollary that justifies the completeness of this 
set of basis functions. 

As in the MFS, a good location for the support of the cracklets, is an 
issue of current research (cf. [2,8,22] ), and we either considered a stan- 
dard approach using boundary dilation, like in the IBEM, or used a MFS 
choice as proposed in [2] , or even considered cracklets on the original 
boundary as in the BEM, as was proposed in [5] to tackle difficulties in 
the approximation of discontinuous functions. In particular, to avoid the 
Gibbs oscillations when approximating discontinuous boundary condi- 
tions (e.g. [16] ). 

Several different methods have been considered to avoid the sin- 
gularities associated with the fundamental solutions and allowing di- 
rect collocation on the boundary, such as the boundary knot method 
[15] , the regularized meshless method [23] , the modified method of 
fundamental solutions [21] , or the singular boundary method [11] . In 
Section 3.7 we emphasize that when the solution does not have an 
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analytic extension that goes beyond the analytic support of the approxi- 
mation, the results will become worse. In fact it is known [7,18] that we 
can get exponential convergence of the MFS, as long as the solutions are 
entire, but the rate of convergence decreases fast, if the solutions do not 
extend analitically beyond the analytic support of the approximation, 
which is determined by the artificial boundary. In this sense the Trefftz 
method with cracklets proposed here is not attached to a specific arti- 
ficial boundary as in an indirect boundary integral equation method. It 
inherits the ill conditioning of the inversion of compact operators (e.g. 
[19] ), and these methods have been used to solve inverse problems, 
sharing the need of some regularization techniques (e.g. [4,17] ). 

The cracklets are here considered not only as a Trefftz method, but 
also as an enrichment technique for the MFS, for instance as proposed 
in [3,5,6] , or to serve as a link between the MFS and the BEM. Re- 
cently, the method of angular basis functions (MABF) was proposed in 
[24,25] which considers double layer solutions, that are linked to angu- 
lar measurements in the case of the Laplace equation. These functions 
are also considered in the fast implementation of BEM (e.g. [9] ) and 
correspond to double layer cracklets. 

In Section 2 we briefly recall the notions of layer potentials, and 
in Section 3 we consider the cracklet Trefftz method, as proposed for 
single and double layer potentials, but reduced to constant densities, and 
establish the main mathematical result that proves the completeness of 
the method. Finally in Section 4 we present numerical simulations that 
illustrate the performance of the different approaches. 

2. Single and double layer potentials 

This work will focus on harmonic boundary value problems, but it 
may be extended to problems such as 

( 𝑃 ) 
{  𝑢 = 0 , in Ω
 𝑢 = 𝑔, on Γ = 𝜕Ω (1) 

where a fundamental solution Φ of the differential operator  is avail- 
able. 

In this paper, for simplicity, we assume  = Δ to be the 2D Laplace 
operator, with fundamental solution given by 

Φ( 𝑥 ) = 

1 
2 𝜋

log ||𝑥 ||, (2) 

and when  is the identity operator, ( P ) is a Dirichlet boundary value 
problem, with unique solution u ∈H 

1 ( Ω), for a given g ∈H 

1/2 ( Γ). 
The corresponding single layer or double layer potentials (e.g. [19] ) 

are respectively represented by  𝛾 and  𝛾 , 

 𝛾𝛼( 𝑥 ) = ∫𝛾 Φ( 𝑥 − 𝑦 ) 𝛼( 𝑦 ) 𝑑𝑠 𝑦 (3) 

 𝛾𝛽( 𝑥 ) = ∫𝛾 𝜕 𝒏 𝑦 Φ( 𝑥 − 𝑦 ) 𝛽( 𝑦 ) 𝑑𝑠 𝑦 (4) 

where 𝛾 is a boundary that may coincide with Γ, 𝛼 ∈ 𝐻 

−1∕2 ( 𝛾) and 
𝛽 ∈H 

1/2 ( 𝛾) are unknown densities. Moreover, 𝜕 𝒏 = ∇ ⋅ 𝒏 represents the 
normal derivative (we write 𝜕 𝒏 𝑦 to be clear that the gradient is with re- 
spect to the y variable). 

Remark 2.1. These layer potentials are defined for x ∉ 𝛾, and trace for- 
mulas may be obtained when x ∈Ω→ x 𝛾 ∈ 𝛾 (along the normal direc- 
tion), 

 𝛾𝛼( 𝑥 ) →  ⨏𝛼( 𝑥 𝛾 ) ,  ⨏𝛽( 𝑥 ) → ( 𝜏 +  𝛾 ) 𝛽( 𝑥 𝛾 ) (5) 

where the expressions for  ⨏ and  𝛾 are the same as for  𝛾 and  𝛾 , 

respectively, but now with x 𝛾 ∈Γ, thus implying the definition of a 
(weakly) singular integral operator. 

The parameter 𝜏( 𝑥 𝛾 ) = 

1 
2 for all regular boundary points, but if x 𝛾 is 

a corner point, then 𝜏( 𝑥 𝛾 ) = 

𝜃

2 𝜋 , where 𝜃 represents the internal angle 

(from 0 to 2 𝜋). Taking the trace from the exterior domain, with 𝑥 ∉ Ω̄, 
then 𝜏 has negative sign, corresponding to the external angle. 

2.1. Integral equations 

To find the unknown densities we consider the first kind integral 
equations when x ∈Γ, and Γ≠ 𝛾. 

(i) Using the single layer potential,  𝛾𝛼( 𝑥 ) = 𝑔( 𝑥 ) , for x ∈Γ, i.e. 

∫𝛾 Φ( 𝑥 − 𝑦 ) 𝛼( 𝑦 ) 𝑑𝑠 𝑦 = 𝑔 ( 𝑥 ) . (6) 

(ii) Using the double layer potential,  𝛾𝛽( 𝑥 ) = 𝑔( 𝑥 ) , for x ∈Γ, i.e. 

∫𝛾 𝜕 𝒏 𝑦 Φ( 𝑥 − 𝑦 ) 𝛽( 𝑦 ) 𝑑𝑠 𝑦 = 𝑔( 𝑥 ) . (7) 

Remark 2.2. When Γ = 𝛾, we obtain 

𝛼( 𝑥 ) = 𝑔( 𝑥 ) , (8) 

which is also a first kind integral equation on Γ, but a second kind in- 
tegral equation is obtained for the double layer potential, since ( 𝜏 + 

 ) 𝛽( 𝑥 ) = 𝑔( 𝑥 ) , which means 

𝜏( 𝑥 ) 𝛽( 𝑥 ) + ∫Γ 𝜕 𝒏 𝑦 Φ( 𝑥 − 𝑦 ) 𝛽( 𝑦 ) 𝑑𝑠 𝑦 = 𝑔( 𝑥 ) . (9) 

Remark 2.3. In the case of Neumann boundary conditions, the in- 
ner normal trace of the single and double layer potentials gives, when 
x ∈Ω→ x 𝛾 ∈ 𝛾 (along the normal direction), 

𝒏 ( 𝑥 𝛾 ) ⋅ ∇  𝛾𝛼( 𝑥 ) → (− 𝜏 +  

′
𝛾
) 𝛼( 𝑥 𝛾 ) (10) 

𝒏 ( 𝑥 𝛾 ) ⋅ ∇  𝛾 𝛽( 𝑥 ) →  𝛾𝛽( 𝑥 𝛾 ) (11) 

with 

 

′
𝛾
𝛼( 𝑥 𝛾 ) = ∫𝛾 𝜕 𝒏 𝑥 Φ( 𝑥 𝛾 − 𝑦 ) 𝛼( 𝑦 ) 𝑑𝑠 𝑦 and 

 𝛾𝛽( 𝑥 𝛾 ) = ∫𝛾 𝜕 𝒏 𝑥 𝜕 𝒏 𝑦 Φ( 𝑥 𝛾 − 𝑦 ) 𝛽( 𝑦 ) 𝑑𝑠 𝑦 . 

The operator  𝛾 presents then a singular integration which is understood 
in the sense of the Cauchy principal value. 

2.2. Direct and indirect boundary element approach 

Consider the boundary element method in its two variants – the di- 
rect the and indirect approach. 

(i) In the BEM, Eq. (8) or (9) are considered, taking 𝛾 = Γ. 
(ii) In the IBEM, Eq. (6) or (7) are considered, with 𝛾 being an arti- 

ficial boundary surrounding the original Γ. That is, we may take 𝜔 ⊃ Ω̄
and 𝛾 = 𝜕𝜔. 

The integral equation (9) is of the second kind, it is better condi- 
tioned and usually preferred to the first kind integral equation (8) . 

The discretization of the integral operators on 𝛾, equal or not to Γ, 
usually consists in splitting that boundary into boundary elements 

𝛾 = 𝛾1 ∪⋯ ∪ 𝛾𝑁 

(12) 

which may reproduce or approximate the full boundary. Thus, 

 𝛽( 𝑥 ) = 

𝑁 ∑
𝑛 =1 

∫𝛾𝑛 𝜕 𝒏 𝑦 Φ( 𝑥 − 𝑦 ) 𝛽𝑛 ( 𝑦 ) 𝑑𝑠 𝑦 (13) 

using local densities 𝛽𝑛 = 𝛽|Γ𝑛 and, for example, a trigonometric or a 
power series expansion, 𝛽𝑛 ( 𝑠 ) = 𝛽𝑛, 0 + 𝛽𝑛, 1 𝑠 + 𝛽𝑛, 2 𝑠 

2 + ⋯ 

In the simplest situation 𝛽n ≅𝛽n , 0 are constant terms, and the calcu- 
lation resumes to the evaluation of 

𝐾 𝑛 ( 𝑥 ) = ∫𝛾𝑛 𝜕 𝒏 𝑦 Φ( 𝑥 − 𝑦 ) 𝑑𝑠 𝑦 (14) 

leading to the approximation 

 𝛽( 𝑥 ) ≈
𝑁 ∑
𝑛 =1 

𝛽𝑛 𝐾 𝑛 ( 𝑥 ) . (15) 
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