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a b s t r a c t 

Despite all the efforts and success for finding the optimal location of the sources outside the domain for the method 

of fundamental solutions (MFS), this issue continues to attract the attention from researchers for seeking more 

efficient and reliable algorithms. In this paper, we propose to extend the adaptive greedy technique which applies 

the primal-dual formulation for the selection of source nodes in the MFS for Laplace equation with nonharmonic 

boundary conditions. Such approach is a data-dependent algorithm which adaptively selects the suitable source 

nodes based on the specific adaptive procedure. Both 2D and 3D examples are provided. Moreover, the proposed 

algorithm is easy to implement with high accuracy. 

1. Introduction 

The method of fundamental solutions (MFS) [1,2] is a meshless tech- 

nique for the numerical solution of certain elliptic boundary value prob- 

lems which falls in the class of methods generally called boundary-type 

methods [3,4] . The MFS has been considered as one of the most intu- 

itive approaches to solve partial differential equations in science and 

engineering. In the MFS, the solution to the problem is represented by 

the linear combinations of fundamental solutions. To avoid the singu- 

larities of the fundamental solutions, the MFS places the source nodes 

away from the physical boundary. The main advantage of the MFS over 

domain discretization methods such as the finite element method and 

the finite difference method is that the approximation exactly satisfies 

the governing equation and one only have to enforce the approxima- 

tion to satisfy the boundary conditions. The MFS also has some advan- 

tages over the boundary-type methods such as the boundary element 

method. The boundary discretization and integrations over the bound- 

ary are totally avoided in the MFS [5,6] . Until now, the MFS has been 

used to solve the steady-state heat conduction problem [7] , the elastic- 

ity problem [8] , the wave problem [9] , and the bi-harmonic problem 

[10] . Some comprehensive reviews of the MFS and related methods are 

given in [11–13] . 

Although the MFS has been successfully used to solve engineering 

problems, one of the most arguable issue concerning the MFS is still 
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the location of the source nodes. In the early stage of the MFS, the 

source nodes were taken as unknowns which yielded a nonlinear sys- 

tem of equations. One of the main disadvantages of this approach is 

computationally expensive. For such reasons, in the later applications, 

the locations of the source nodes are fixed in advance thus avoiding the 

nonlinearity and high computational cost. Usually, the number of col- 

location nodes is the same as the number of source nodes. The approx- 

imation of the MFS is given by the linear combination of fundamental 

solutions where the boundary conditions are satisfied by the collocation 

method, for which a system with a number of linear equations with an 

equal number unknowns is solved. Some improved version of the MFS 

in the literatures should be mentioned here. In [14] Smyrlis proposed 

the under-determined version of the MFS which selected more sources 

than collocation points. Karageorghis presented the Almansi of funda- 

mental solutions for solving biharmonic problems where the boundary 

conditions were satisfied by the least square method [15] . A novel for- 

mulation of the MFS based on the simple layer potential representation 

of Fichera was proposed in [16] . Furthermore, in order to maintain the 

accuracy of the MFS approximation, the locations of the source nodes 

should be carefully determined. Smyrlis and Karageorghis indicated the 

poor accuracy of the method when the source nodes were placed ei- 

ther very close to or very far from the boundary [17] . Nishimura et al. 

presented the automatic arrangement of fictitious charges and contour 

points in charge simulation method for polar coordinate system [18] . 

A simulated annealing algorithm for optimising of the placement of the 

source nodes was studied in [19] . Adaptive refinement scheme for the 

least-squares approach of the method of fundamental solution for three- 

dimensional harmonic problems was proposed in [20] where a hierar- 

chical data structure was used for spreading of the source nodes starting 
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from an initial coarse distribution. Within this approach, the number of 

source nodes was not fixed but some new sources are added by using a 

correction indicator that was related to, a sensitivity analysis of the so- 

lutions. Based on the numerical experiments with randomly distributed 

sources and theoretical analysis, Mitic indicated that the placements and 

number of source nodes were not quite important, providing that certain 

conditions were satisfied [21] . Nishimura and Nishimori adapted the im- 

mune algorithm to the 3D arrangement problem of fictitious charges and 

contour points [22] . Ko ł odziej and Klekiel proposed the evolutionary al- 

gorithms for optimization of method parameters in solution of Poisson’s 

equation [23] . Gorzela ń czyk and Ko ł odziej recommended geometrically 

similar contours instead of using domain decomposition in the case of 

torsion of prismatic rods on concave regions [24] . Alves [25] proposed 

a choice along the discrete normal direction with a local criterion to de- 

fine the distance to the boundary. Gorzela ń czyk et al., [26–28] applied 

the genetic algorithms for determining the arrangement of fictitious 

nodes in the MFS. The practical algorithm was proposed by Karageorghis 

[29] for determining the optimal pseudo-boundary. Chen et al. [30] sug- 

gested the leave-one-out cross validation algorithm for efficiently iden- 

tifying the source nodes. Despite the efforts mentioned above, more at- 

tempts can be found in [31–34] and references therein. The algorithm 

proposed in [35] is the so-called greedy technique which is used to pick 

the radial basis function centers and collocation nodes [36] . Schaback 

[37] used the circular boundary and similar boundary points as the trial 

space for different bounded curves. This adaptive method tries to se- 

lect the good source nodes by picking the column of the m × n matrix 

A whose multiples approximate the right hand side m ×1 vector b in a 

best way and then transforms the problem to the space orthogonal to 

that column and repeats the process. Once the algorithm has selected a 

number of columns in this way, we take this column selection for a trial 

space and use the MFS for solving the given problem on that trial space. 

In this paper, we have used the adaptive greedy technique based on 

the primal-dual formulation of the minimum-norm solution to an over- 

determined system [38] to obtain the optimal source nodes. Also, the 

trial space is chosen in such a way that its elements lie on the exterior 

of the given curve and inside a bounded domain. 

The rest of the paper is divided into four sections. In Section 2 , we 

briefly introduce the general problem and the MFS formulation for its 

solution. In Section 3 , we review the adaptive greedy technique used in 

this paper. Some numerical results are used to show the accuracy of the 

present method in Section 4 . Section 5 draws some concluding remarks. 

2. The method of fundamental solutions 

Since the present approach can be extended to general equations, 

we consider the following simple Laplace equation under the Dirichlet 

boundary condition as an example 

Δ𝑢 = 0 , in Ω, (1) 

where Δ is the Laplace operator, u is the unknown function to be deter- 

mined, and Ω represents the bounded simply connected domains in 2D 

and 3D. Eq. (1) subjects to the following Dirichlet boundary condition 

𝑢 = 𝑔 , on 𝜕 Ω, (2) 

where the function g is given in advance and doesn’t necessarily to be a 

harmonic function. 

In the MFS, the solution to Eqs. (1) and (2) is given by the linear 

combination of the fundamental solutions 

𝑢 𝑁 

( 𝒙 ) = 

𝑁 ∑
𝑘 =1 

𝜆𝑘 𝐺( 𝒙 , 𝝃𝑘 ) , 𝒙 ∈ Ω, (3) 

where 
{
𝝃𝑘 
}𝑁 

𝑘 =1 are the source nodes placed away from the boundary, {
𝜆𝑘 

}𝑁 

𝑘 =1 are unknown coefficients to be determined by the collocation 

method, and the G ( x , 𝝃) is the fundamental solution of the Laplace equa- 

tion, as follows 

𝐺( 𝒙 , 𝝃) = − 

1 
2 𝜋

ln ‖𝒙 − 𝝃‖2 , (4) 

for two dimensional problems, and 

𝐺( 𝒙 , 𝝃) = 

1 
4 𝜋‖𝒙 − 𝝃‖2 , (5) 

for three dimensional problems. 

In the collocation method, we also take a set of collocation nodes {
𝒙 𝑙 
}𝑀 

𝑙=1 on the boundary 𝜕Ω. Collocating the given boundary condition 

will yield 

𝑢 𝑁 

( 𝒙 𝑙 ) = 𝑔( 𝒙 𝑙 ) , 𝑙 = 1 , … , 𝑀. (6) 

The resulting matrix expression of the MFS discretization Eq. (6) can 

be given in the following matrix form 

𝑨 𝝀 = 𝒈 , (7) 

where A is a M ×N matrix and g is a M ×1 vector defined by 

𝑨 𝑙,𝑘 = 𝐺( 𝒙 𝑙 , 𝝃𝑘 ) , 𝒈 𝑙 = 𝑔( 𝒙 𝑙 ) , 𝑙 = 1 , … , 𝑀, 𝑎𝑛𝑑, 𝑘 = 1 , … , 𝑁, (8) 

and the unknown 𝝀 can be determined if M ≥ N . 

3. The adaptive greedy technique 

In order to use the adaptive greedy technique, we take the number 

of source nodes larger than the number of boundary collocation nodes 

which means that M ≤ N . Consider the under-determined system of Eq. 

(7) with A ∈R 

M ×N , g ∈R 

M , and M ≤ N . Then the solution to the under- 

determined system is defined through the following minimization prob- 

lem: 

min 1 
2 
𝝀𝑇 𝐼 𝝀, subject to , 𝑨 𝝀 − 𝒈 = 0 . (9) 

The primal-dual formulation of Eq. (7) can be given in the following 

sub-matrices form using the method of Lagrange multipliers, as follows: [ 
𝐼 𝑨 

𝑇 

𝑨 𝟎 

] 
= 

[ 
𝝀

𝒗 

] 
= 

[ 
0 
𝒈 

] 
, (10) 

where I is the identity matrix and v is the vector of Lagrange multipli- 

ers. The adaptive algorithm for the determination of the nearly opti- 

mal source nodes is depended on the system of Eq. (10) . For the adap- 

tive algorithm, different sub-matrices of the coefficient matrix A and 

g are required. We define the sub-matrices of the matrix A by A ( · ): 

R 

m ×R 

n →R 

m × n as the sub-matrices made up of the m number of bound- 

ary collocation nodes and n number of source nodes. Similar, the sub- 

vectors of g by g ( · ): R 

m →R 

m which are the boundary values of the 

chosen boundary collocation nodes. 

In the adaptive algorithm, a new indexed sets is used which is de- 

noted by 𝑋 𝑘 = 

{
𝒙 1 , 𝒙 2 , … , 𝒙 𝑘 

}
and 𝜁𝑘 = 

{
𝝃1 , 𝝃2 , … , 𝝃𝑘 

}
, 𝑘 = 1 , 2 , … , 𝑀

for the boundary collocation nodes and source nodes, respectively, such 

that the chosen nodes are placed earlier in the given lists. Suppose that, 

after k iterations, the adaptive algorithm has chosen a set of k boundary 

collocation nodes X k ⊂X M 

, and a set of source nodes 𝜁k ⊂𝜁N , respec- 

tively. These chosen boundary nodes and sources define a sub-problem 

to the original problem, as follows: 

𝑨 𝑘 �̂�
𝑘 = �̂� 𝑘 , 

𝑨 

𝑇 
𝑘 ̂
𝒗 𝑘 = − ̂𝝀

𝑘 
, (11) 

where 𝑨 𝑘 = 𝑨 ( 𝑋 𝑘 , 𝜁𝑘 ) and �̂� 𝑘 = 𝒈 ( 𝑋 𝑘 ) which are the coefficient matrix 

and boundary conditions defined by X k boundary collocation nodes and 

𝜁k source nodes. After solving the Eq. (11) , the 𝝀k ∈R 

N can be the exten- 

sion of the obtained �̂�
𝑘 

by adding zeros into the sequence according to 

the non-selected source nodes. Similarly, v k ∈R 

N can be the extension of 

the obtained �̂� 𝑘 by adding zeros. The primal PDE residual, with respect 

to the intermediate solution 𝝀k can be obtained by 

𝒓 𝑘 = 𝑨 𝝀𝑘 − 𝒈 = 𝑨 ( 𝑋 𝑀 

, 𝜁𝑘 ) ̂𝝀
𝑘 − 𝒈 . (12) 
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