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a b s t r a c t 

A numerical method based on the method of fundamental solutions (MFS) and the method of particular solutions 
(MPS) together with the successive-approximation iteration process is presented. The nonlinear behaviour of the 
material that hardens with plastic deformation is characterized by the Chakrabarty model. The considerations 
are based on the incremental theory of plasticity. Furthermore, the incremental strain equations relate the plastic 
strain increments to the total strains only (the stresses do not appear there). The method is used for solving three 
example boundary value problems that describe the stress state in some plates subjected to external loads. The 
accuracy of the results is examined on the basis of the boundary conditions fulfilment and the comparison with 
the finite element method (FEM). Finally, the regions of elastic/plastic deformation are identified. Then, the 
distribution of the equivalent stress is shown. 

1. Introduction 

Elastic–plastic problems are of special interest in the engineering ap- 
plications. For the design of large structures or even structural elements 
under some load conditions, a knowledge of stresses acting within these 
elements and also properties of a material are required. A common ap- 
proach assumes a linear relationship between stresses and strains and its 
mathematical bases are provided by the theory of elasticity (see, e.g., 
[1,2] ). An important extension of this approach is the theory of plas- 
ticity [3–8] that enables an analysis of stresses and strains that appear 
in structural elements in both elastic and plastic ranges, respectively. 
The response of a material beyond the load corresponding to the yield 
stress can be modelled by linear or nonlinear stress–strain relations. The 
more comprehensive constitutive model we use, the better design of a 
structure considered. 

The considered mechanical problems are formulated in the form 

of boundary value problems (BVPs) for partial differential equations 
(PDEs) with the governing equations that are nonlinear ones. There are 
many numerical methods that can be used to solve the elastic–plastic 
problems. The most commonly used ones are the finite element method 
(FEM) [9–13] , the boundary element method (BEM) [14–17] and the 
finite difference method (FDM) [18] . They all belong to a group of so 
called mesh methods. The approximate solutions of these problems can 
be also obtained with meshless methods that gained popularity because 
of their significant advantages. Among the most important ones we can 
distinguish the following issues. A cloud of points only (i.e., a set of 
their coordinates) is required for the meshless methods instead of a mesh 
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(grid) of points that has to be built in the case of mesh methods. An im- 
plementation is very simple even for problems defined in complicated 
geometries and/or in three dimensions. An approximation of the solu- 
tion is proposed as a linear combination of radial basis functions (RBFs). 
This approach is convenient because of the fact that the approximate 
solution is given as a continuous function with continuous derivatives. 
We can make a practical and effective use of this property when a given 
physical quantity is represented by a derivative of the solution function. 

Among the most recent works in the area of elastic–plastic problems 
we can mention the following ones. Tsiatas and Babouskos [19] ana- 
lyzed the elastic–plastic problem of functionally graded bars subjected 
to torsional loading. A formulation of the problem is general and can 
be applied to bars of an arbitrary cross-section. The authors used the 
BEM and the analog equation method [20] for computations. Assidi 
et al. [21] also considered some structural plasticity problems. They 
used the algorithm belonging to a family of asymptotic numerical meth- 
ods (ANM) [22] to solve a number of elastic–plastic problems (e.g., a 
stretching of a rectangular plate, a bending of a cantilever beam, an 
uniaxial tension of a plate with a central circular hole). Similarly, in 
[23] , Zahrouni et al. chose the deformation theory of plasticity and ap- 
plied the ANM to solve selected problems involving nonlinear constitu- 
tive laws. Then, in [24] , Foti and di Roseto modelled analytically and 
with the FEM the elastic–plastic behaviour of metallic strands under 
axial-torsional loads. Hassani and Faal [25] took into account the Saint- 
Venant torsion of orthotropic bars with rectangular cross section weak- 
ened by cracks. The authors solved several examples of an arc-crack 
and a single straight crack. They also studied the interaction between 
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two cracks. In [26] , Sapountzakis and Tsipiras used the BEM to solve a 
nonlinear inelastic uniform torsion of cylindrical composite bars of ar- 
bitrary cross section consisting of materials in contact. In [27] , Uomoto 
et al. applied the mesh-independent data point finite element method 
(MDP-FEM) for large deformation elastic–plastic problems. As an exam- 
ple, they analyzed the diffused necking of tensile bars. Finally, in [28] , 
Yoon et al. presented an efficient warping model for elastoplastic tor- 
sional analysis of composite beams. 

There are a number of meshless methods that can be chosen for solv- 
ing elastic and elastoplastic problems. In the case of elastoplastic ones, 
the appropriate algorithms are dedicated for the nonlinear problems. We 
can mention, e.g., the MFS–MPS that is often used with the Picard itera- 
tion process [29,30] , the Kansa-RBF method for the nonlinear problems 
[31,32] , the homotopy analysis method (HAM) [33–35] or one of some 
other iteration processes [18,36] . In [37] , Liu and Gu presented a point 
interpolation method (PIM) that was further used for two-dimensional 
solids. Wen and Aliabadi [38] presented an improved meshless colloca- 
tion method that can be used for higher order derivatives of shape func- 
tions by radial basis function method or moving-least square method. 
The authors applied this approach for elastostatic and elastodynamic 
problems. Then, in [39] , Tu et al. analyzed material nonlinearity with 
an effective shear modulus approach. This method is based on the strain 
control method by the use of point collocation method. The authors 
applied it for solving two-dimensional elastoplastic problems. Next, in 
[40] , Kolodziej and Fraska took into account an elastic torsion of bars 
possessing a regular polygonal cross-section by means of boundary col- 
location method. The authors analyzed a few cases of bars, e.g., simply 
connected rods, two connected rods (rods with a hole), and composite 
bars (two different materials) possessing a regular polygon in their cross- 
section contour. In [41,42] , Karageorghis et al. used the MFS for the 
solution of some inverse void (rigid inclusion or cavity) problems that 
arise in two-dimensional isotropic linear elasticity. In [43] , Kolodziej 
and Gorzelanczyk also studied a torsion of prismatic bars. They assumed 
an elastic–plastic material behaviour, the Saint-Venant displacement as- 
sumption and deformation theory of plasticity. In [29] Kolodziej et al., 
applied the MFS–MPS for the inverse problem related to the determi- 
nation of elastoplastic properties from the torsional experiment. Then, 
Jankowska and Kolodziej [30,36] applied the MFS–MPS for the study 
of the stress state in a plate subjected to elastic–plastic deformation 
due to uniaxial extension. In [30] , the problem was formulated with 
the deformation theory of plasticity and the Ramberg–Osgood stress–
strain equation. In [36] , the authors applied the incremental theory 
of plasticity with the associated flow rule given by the Prandtl–Reuss 
relations and the stress–strain model proposed by Chakrabarty [4] . In 
[44] , Karageorghis et al. presented the matrix decomposition algorithms 
for the efficient solution of the linear systems arising from Kansa-RBF 
discretizations of elliptic boundary value problems in regular polygo- 
nal domains. The authors considered the Poisson equation, the inhomo- 
geneous biharmonic equation, and the inhomogeneous Cauchy–Navier 
equations of elasticity. Then, in [31,32] , Jankowska et al. applied the 
Kansa-RBF collocation method to two-dimensional nonlinear boundary 
value problems. Among the others, an elastoplastic torsion problem (see 
also [29] ) was taken into account. The authors solved the nonlinear sys- 
tem of equations resulting from the Kansa-RBF discretization for the un- 
known coefficients in the RBF approximation by a method of nonlinear 
optimization. 

Subsequently, we consider the numerical method based on the MFS–
MPS and the successive-approximation iteration process for solving 
some elastic–plastic plane stress problems. Since it is well-known that 
the plastic strains are dependent on the loading path, the incremental 
theory of plasticity is taken into account. The research is based on the 
approach proposed in [18] , where incremental strain relations relate 
the plastic strain increments to the total strains only and the stresses 
do not appear there. For the nonlinear stress–strain relationship, we 
choose the model proposed by Chakrabarty [4] . As it is a nonlinear re- 
lationship in the range of plastic deformation with a parameter that is a 

strain-hardening exponent, we can use it to model a behaviour of many 
materials. As numerical examples we take the boundary value problems 
describing the stress state in plates of geometries such that the regions 
of stress concentration can be observed. The plates are subjected to uni- 
axial extension or compression. There is a number of publications (see 
e.g. [8,18,45,46] ) that consider the boundary value problem with a gov- 
erning equation of the form presented in this paper. The authors use the 
iteration process defined in [18] , but the appropriate successive approx- 
imations are obtained with some finite difference method. In our paper, 
we propose an algorithm based on meshless methods, i.e. the MFS–MPS, 
where the partial derivatives of the plastic strain increments are com- 
puted with the generalized finite differences. Such an approach was not 
previously proposed for this boundary-value problem. In addition to the 
advantages which are common for a class of meshless methods, we can 
indicate the ones that are specific for the algorithm considered. For ex- 
ample, we can significantly reduce the dimension of the linear system 

of equations solved in each step of the iteration process. In the case of 
our method the dimension of the matrix of coefficients required by the 
MPS depends only on the number of interpolation points and polynomi- 
als. We also have to solve another system of equations due to the MFS 
applied, but its dimension depends only on the number of boundary and 
source. For the finite difference method all mesh points are taken into 
account when the matrix of coefficients is built. 

The paper has the following layout. The stress–strain relations, 
the constitutive model and the problem formulation are described in 
Section 2 . Then, in Section 3 we propose the algorithm based on the 
successive-approximation iteration process [18] and the meshless meth- 
ods, i.e., the MFS–MPS. Since in the right-hand side function of the gov- 
erning equation, the partial derivatives of the plastic strain increments 
are included, we also use the generalized finite differences [47–54] for 
computations. A sequence of numerical results concerning the solution 
of the example problems is presented in Section 4 . The exactness of the 
results obtained with the considered algorithm is examined on the basis 
of the boundary conditions fulfilment and the comparison with the FEM. 
Then, the distribution of the equivalent stress and the regions of elastic 
and plastic deformation are shown. The conclusions listed in Section 5 , 
bring the paper to the end. 

2. Problem formulation 

2.1. Assumptions about stress–strain relations and elastic–plastic 

constitutive model 

We focus on incremental strain relations given in the form proposed 
by Mendelson [18] (see also [8,45,46] ). These equations relate the plas- 
tic strain increments to the total strains only and they do not recourse 
to the stresses. 

We assume that a loading path to a specific state of stress is divided 
into K increments of load. For a given k th increase of the load by a 
small amount, a plastic strain increment Δ𝜀 𝑝 

𝑖𝑗 
is produced. Hence, the 

total strain 𝜀 ij can be written as 

𝜀 𝑖𝑗 = 𝜀 𝑒 𝑖𝑗 + 𝜀 
𝑝 
𝑖𝑗 
+ Δ𝜀 𝑝 

𝑖𝑗 
, 𝜀 

𝑝 
𝑖𝑗 
= 

𝑘 −1 ∑
𝑚 =1 

Δ𝜀 𝑝 
𝑖𝑗,𝑚 

, (1) 

where 𝜀 𝑒 
𝑖𝑗 

is the elastic component of the total strain, 𝜀 𝑝 
𝑖𝑗 

is the accumu- 
lated plastic strain up to (but not including) the current increment of 
load and Δ𝜀 𝑝 

𝑖𝑗 
is the increment of plastic strain due to the current incre- 

ment of load. Following the derivation presented in [18] , we define the 
modified total strains as 

𝜀 ′𝑖𝑗 ≡ 𝜀 𝑖𝑗 − 𝜀 
𝑝 
𝑖𝑗 
. (2) 

Substituting Eqs. (1) 1 to (2) , we obtain 

𝜀 ′𝑖𝑗 = 𝜀 𝑒 𝑖𝑗 + Δ𝜀 𝑝 
𝑖𝑗 
. (3) 

Subtracting the spherical strain tensor 𝜀 m 

𝛿ij (in which 𝜀 𝑚 = 

1 
3 𝜀 𝑠𝑠 denotes 

the mean strain) from both sides of Eq. (3) , we get the modified strain 

13 



Download English Version:

https://daneshyari.com/en/article/6924916

Download Persian Version:

https://daneshyari.com/article/6924916

Daneshyari.com

https://daneshyari.com/en/article/6924916
https://daneshyari.com/article/6924916
https://daneshyari.com

