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a b s t r a c t 

Seismic wave propagation in homogeneous and isotropic Kelvin–Voight viscoelastic media is dealt with the mesh- 

less generalized finite difference method. The schemes in generalized finite differences for the decoupled system 

P-SV and SH are obtained. For each scheme, a stability limit is achieved and the star dispersion is calculated. 

Some cases are shown using irregular discretizations. 

1. Introduction 

Viscoelastic media have been considered for the simulation of seis- 
mic wave propagation by Day and Minster [1] who approximated a vis- 
coelastic modulus by a rational function, coefficients of which are ob- 
tained by the Pad approximate method. Emmerich and Korn [2] used 
Generalized Maxwell Body (GMB-EK) as a relaxation function. More- 
over, Carcione et al. [3] , in accordance with Liu et al. [4] , developed 
a method that used the Generalized Zener Body (GZB). Many authors 
such as Moczo have used the GMB-EK and others, such as Robertsson, 
chose to use the GZB theory, and then, two parallel lines of development 
were established until Moczo and Kristek [5] showed the relationship 
between two rheologies. 

Attenuation is described adequately by means of the Kelvin–Voight 
viscoelastic model in many media at ambient temperature, as seen in 
Auld [6] . It is clear that the Kelvin–Voight model is a particular case, 
but still it is used in most applications [7] . Some of these applications 
are related to seismic exploration or earthquake seismology [8] . As an 
example, Sahu et al. [9] studied the gravity effect, the internal friction 
and the heterogeneity of media by means of SH wave propagation using 
the Kelvin–Voight constitutive relation. 

Most authors, such as Carcione [10] or Moczo et al. [11] , deal with 
memory variables to avoid the implementation of the constitutive law 

given by the convolution relation. The Kelvin–Voight model can be ob- 
tained as a particular case of relaxation function in the formulation with 
memory variables [3] . In spite of this, the Kelvin–Voight model has the 
advantage of not requiring additional variables with the corresponding 
decrease in the computational cost as Carcione et al. [8] point out. 
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The scheme in finite differences for SH waves in viscoelastic media 
with the Kelvin–Voight constitutive relation is shown in Kalyani and 
Chakraborty [12] . The same authors emphasize the superiority of the 
finite differences method to model seismic waves propagation as a con- 
sequence of its power, rapidity, flexibility and accuracy. A drawback of 
the finite differences method is the dependence of a regular grid that can 
complicate the discretization in complex geometries. This disadvantage 
can be overcome using the generalized finite differences method. 

The generalized finite differences method (GFDM) is a meshless nu- 
merical method that provides values of the partial derivatives at each 
point (node) of a domain and allows us to solve problems easily in any 
geometry. 

This method has already been applied to other kind of problems, 
as for example, in wave propagation in elastic media to deal with inter- 
faces [13] , to obtain the two-dimensional shallow water equations [14] , 
to simulate the two-dimensional sloshing phenomenon [15] , in thermoe- 
lastic analysis [16–19] or in inverse heat source problems [20] . 

This paper is focused on obtaining the schemes in generalized finite 
differences for the P-SV and SH wave equations in a Kelvin–Voight vis- 
coelastic medium, obtaining a limit for the stability, obtaining a formula 
for measuring the star dispersion and obtaining the equations for Neu- 
mann boundaries. 

The obtained schemes are applied in order to compare the numer- 
ical and analytical results in some academic cases. The application of 
the method is highlighted in adverse conditions of irregularity in each 
case. Nevertheless, in no event is it intended to analyze the influence of 
parameters or to solve specific practical problems. These issues will be 
the object of future works. 
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Therefore, the paper is organized as follows. The schemes in GFD 

are presented in Section 2 , the analysis of stability in Section 3 and 
the analysis of star dispersion in Section 4 . In Section 5 the method is 
applied in irregular discretizations. 

2. Kelvin–Voight viscoelastic waves in GFD 

2.1. Wave equations in viscoelastic media 

Let us consider the x –z plane and the decoupled problem for P-SV and 
SH waves. Let U, V and W be the displacements. As in Ben-Menahem and 
Singh [21] , the correspondences 𝜆 → 𝜆 + 𝜆′ 𝜕 

𝜕𝑡 
and 𝜇 → 𝜇 + 𝜇′ 𝜕 

𝜕𝑡 
are used 

in order to establish the constitutive equations of a linear viscoelastic 
media following a Kelvin model. 

P-SV 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝜎𝑥𝑥 = 

(
𝜆 + 𝜆′ 𝜕 

𝜕𝑡 

)
( 𝑈 ,𝑥 + 𝑊 ,𝑧 ) + 2 

(
𝜇 + 𝜇′ 𝜕 

𝜕𝑡 

)
𝑈 ,𝑥 

𝜎𝑧𝑧 = 

(
𝜆 + 𝜆′ 𝜕 

𝜕𝑡 

)
( 𝑈 ,𝑥 + 𝑊 ,𝑧 ) + 2 

(
𝜇 + 𝜇′ 𝜕 

𝜕𝑡 

)
𝑊 ,𝑧 

𝜎𝑥𝑧 = 

(
𝜇 + 𝜇′ 𝜕 

𝜕𝑡 

)
( 𝑈 ,𝑧 + 𝑊 ,𝑥 ) 

(1) 

SH 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎𝑥𝑦 = 

(
𝜇 + 𝜇′ 𝜕 

𝜕𝑡 

)
𝑉 ,𝑥 

𝜎𝑦𝑧 = 

(
𝜇 + 𝜇′ 𝜕 

𝜕𝑡 

)
𝑉 ,𝑧 

(2) 

being 𝜆 and 𝜇 the Lamé parameters, 𝜌 the density and 𝜆′ and 𝜇′ the 
viscosity coefficients. 

The general equations of motion expressed in terms of displacements 
for both P-SV and SH waves are 

P-SV 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
𝑈 ,𝑡𝑡 = 𝛼2 𝑈 ,𝑥𝑥 + 𝛽2 𝑈 ,𝑧𝑧 + ( 𝛼2 − 𝛽2 ) 𝑊 ,𝑥𝑧𝑡 + 𝜏𝑃 𝛼

2 𝑈 ,𝑥𝑥𝑡 

+ 𝜏𝑆 𝛽
2 𝑈 ,𝑧𝑧𝑡 + ( 𝜏𝑃 𝛼2 − 𝜏𝑆 𝛽

2 ) 𝑊 ,𝑥𝑧𝑡 

𝑊 ,𝑡𝑡 = 𝛼2 𝑊 ,𝑧𝑧 + 𝛽2 𝑊 ,𝑥𝑥 + ( 𝛼2 − 𝛽2 ) 𝑈 ,𝑥𝑧 + 𝜏𝑃 𝛼
2 𝑊 ,𝑧𝑧𝑡 

+ 𝜏𝑆 𝛽
2 𝑊 ,𝑥𝑥𝑡 + ( 𝜏𝑃 𝛼2 − 𝜏𝑆 𝛽

2 ) 𝑈 ,𝑥𝑧𝑡 

(3) 

SH 

{
𝑉 ,𝑡𝑡 = 𝛽2 ( 𝑉 ,𝑥𝑥 + 𝑉 ,𝑧𝑧 ) + 𝜏𝑆 𝛽

2 ( 𝑉 ,𝑥𝑥𝑡 + 𝑉 ,𝑧𝑧𝑡 ) (4) 

where 𝛼 and 𝛽 are the velocities of P and S waves, respectively, and 

𝜏𝑃 = 

𝜆′+2 𝜇′
𝜆+2 𝜇 and 𝜏𝑆 = 

𝜇′

𝜇
are the relaxation times for P and S waves, re- 

spectively. 

2.2. Formulae in generalized finite differences 

Let us consider a discretization M of a domain D , the interior node 
( x 0 , 𝑡 𝑛 ) ∈ Ω = 𝑀 ∩ 𝑖𝑛𝑡 ( 𝐷) , the star 𝐸( x 0 ) with 𝑁 + 1 nodes and the func- 
tion Ψ. This method allows to obtain the values of the partial derivatives 
in each node by means of a Taylor expansion and using a moving least 
squares approximation. The obtained function is 

𝐵( D 𝜓 ) = 

𝑁 ∑
𝑖 =1 

( 𝜓 0 − 𝜓 𝑖 + 𝜺 
𝑇 
𝑖 

D 𝜓 ) 2 𝑤 

2 
𝑖 

(5) 

where w i is a weighting function, 𝜓 is an approximation of Ψ and 

D 𝜓 = 

(
𝜓 0 ,𝑥 𝜓 0 ,𝑧 𝜓 0 ,𝑥𝑥 𝜓 0 ,𝑥𝑧 𝜓 0 ,𝑧𝑧 

)𝑇 
(6) 

𝜺 𝑖 = 

(
ℎ 𝑖 𝑘 𝑖 ℎ 2 

𝑖 
∕2 ℎ 𝑖 𝑘 𝑖 𝑘 2 

𝑖 
∕2 

)𝑇 
(7) 

with h i and k i relative coordinates regarding the central node. 
By minimizing (5) the values of the partial derivatives are obtained. 

So if m 0 pq denotes the coefficient of the central node and m spq denotes 
the coefficient of each node in the rest of the star, p, q ∈ { x, z } and 
𝑠 ∈ {1 , …𝑁} , then the partial derivatives are given by 

𝜓 0 ,𝑝𝑞 = − 𝑚 0 𝑝𝑞 𝜓 0 + 

𝑁 ∑
𝑠 =1 

𝑚 𝑠𝑝𝑞 𝜓 𝑠 (8) 

More details can be seen in Benito et al. [22] or in M. Ureña et al. 
[23] . 

2.3. Schemes in generalized finite differences 

The temporal approximations are given by the following classical 
finite differences for first and second order, respectively 

𝜓 

𝑛 
0 ,𝑡 = 

3 𝜓 

𝑛 
0 − 4 𝜓 

𝑛 −1 
0 + 𝜓 

𝑛 −2 
0 

2 △ 𝑡 
(9) 

𝜓 

𝑛 
0 ,𝑡𝑡 = 

𝜓 

𝑛 −1 
0 − 2 𝜓 

𝑛 
0 + 𝜓 

𝑛 +1 
0 

△𝑡 2 
(10) 

These schemes can be found in [24] . They have been used for consis- 
tency with the rest of the schemes in the formulae as they have second 
order. 

Substituting (8), (9) and (10) in (3) and (4) , and arranging terms, 
the schemes for P-SV and SH waves in viscoelastic media are achieved 

P-SV 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

𝑢 𝑛 +1 0 = (2 − 𝐴 

0 
𝑢 0 
) 𝑢 𝑛 0 + ( 𝐴 

−1 
𝑢 0 

− 1) 𝑢 𝑛 −1 0 − 𝐴 

−2 
𝑢 0 
𝑢 𝑛 −2 0 

+ 

∑2 
𝑘 =0 

[ 
(−1) 𝑘 +1 𝐴 

− 𝑘 
𝑤 0 

𝑤 

𝑛 − 𝑘 
0 + 

∑𝑁 

𝑗=1 (−1) 
𝑘 ( 𝐴 

− 𝑘 
𝑢 𝑗 

𝑢 𝑛 − 𝑘 
𝑗 

+ 𝐴 

− 𝑘 
𝑤 𝑗 

𝑤 

𝑛 − 𝑘 
𝑗 

) 
] 

𝑤 

𝑛 +1 
0 = (2 − 𝐵 

0 
𝑤 0 

) 𝑤 

𝑛 
0 + ( 𝐵 

−1 
𝑤 0 

− 1) 𝑤 

𝑛 −1 
0 − 𝐵 

−2 
𝑤 0 

𝑤 

𝑛 −2 
0 

+ 

∑2 
𝑘 =0 

[ 
(−1) 𝑘 +1 𝐵 

− 𝑘 
𝑢 0 

𝑢 𝑛 − 𝑘 0 + 

∑𝑁 

𝑗=1 (−1) 
𝑘 ( 𝐵 

− 𝑘 
𝑤 𝑗 

𝑤 

𝑛 − 𝑘 
𝑗 

+ 𝐵 

− 𝑘 
𝑢 𝑗 

𝑢 𝑛 − 𝑘 
𝑗 

) 
] 

(11) 

SH 

{ 

𝑣 𝑛 +1 0 = (2 − 𝐶 

0 
𝑣 0 
) 𝑣 𝑛 0 + ( 𝐶 

−1 
𝑣 0 

− 1) 𝑣 𝑛 −1 0 − 𝐶 

−2 
𝑣 0 

𝑣 𝑛 −2 0 
+ 

∑2 
𝑘 =0 

∑𝑁 

𝑗=1 (−1) 
𝑘 𝐶 

− 𝑘 
𝑣 𝑗 

𝑣 𝑛 − 𝑘 
𝑗 

(12) 

where, for 𝑗 ∈ {0 , 1 , 2 , … , 𝑁} , the coefficients A, B and C are 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝐴 

0 
𝑢 𝑗 

= 𝜑 

𝑃 
1 𝛼

2 𝑚 𝑗𝑥𝑥 + 𝜑 

𝑆 
1 𝛽

2 𝑚 𝑗𝑧𝑧 

𝐴 

−1 
𝑢 𝑗 

= 𝜑 

𝑃 
2 𝛼

2 𝑚 𝑗𝑥𝑥 + 𝜑 

𝑆 
2 𝛽

2 𝑚 𝑗𝑧𝑧 

𝐴 

−2 
𝑢 𝑗 

= 𝜑 

𝑃 
3 𝛼

2 𝑚 𝑗𝑥𝑥 + 𝜑 

𝑆 
3 𝛽

2 𝑚 𝑗𝑧𝑧 

𝐴 

0 
𝑤 𝑗 

= 𝐵 

0 
𝑢 𝑗 

= ( 𝜑 

𝑃 
1 𝛼

2 − 𝜑 

𝑆 
1 𝛽

2 ) 𝑚 𝑗𝑥𝑧 

𝐴 

−1 
𝑤 𝑗 

= 𝐵 

0 
𝑢 𝑗 

= ( 𝜑 

𝑃 
2 𝛼

2 − 𝜑 

𝑆 
2 𝛽

2 ) 𝑚 𝑗𝑥𝑧 

𝐴 

−2 
𝑤 𝑗 

= 𝐵 

0 
𝑢 𝑗 

= ( 𝜑 

𝑃 
3 𝛼

2 − 𝜑 

𝑆 
3 𝛽

2 ) 𝑚 𝑗𝑥𝑧 

𝐵 

0 
𝑤 𝑗 

= 𝜑 

𝑃 
1 𝛼

2 𝑚 𝑗𝑧𝑧 + 𝜑 

𝑆 
1 𝛽

2 𝑚 𝑗𝑥𝑥 

𝐵 

−1 
𝑤 𝑗 

= 𝜑 

𝑃 
2 𝛼

2 𝑚 𝑗𝑧𝑧 + 𝜑 

𝑆 
2 𝛽

2 𝑚 𝑗𝑥𝑥 

𝐵 

−2 
𝑤 𝑗 

= 𝜑 

𝑃 
3 𝛼

2 𝑚 𝑗𝑧𝑧 + 𝜑 

𝑆 
3 𝛽

2 𝑚 𝑗𝑥𝑥 

𝐶 

0 
𝑣 𝑗 

= 𝜑 

𝑆 
1 𝛽

2 ( 𝑚 𝑗𝑥𝑥 + 𝑚 𝑗𝑧𝑧 ) 

𝐶 

0 
𝑣 𝑗 

= 𝜑 

𝑆 
2 𝛽

2 ( 𝑚 𝑗𝑥𝑥 + 𝑚 𝑗𝑧𝑧 ) 

𝐶 

0 
𝑣 𝑗 

= 𝜑 

𝑆 
3 𝛽

2 ( 𝑚 𝑗𝑥𝑥 + 𝑚 𝑗𝑧𝑧 ) 

(13) 

and, for ⋆ ∈ { P, S }, 

𝜑 

⋆ 
1 = △𝑡 2 + 1 . 5 𝜏⋆ △ 𝑡 

𝜑 

⋆ 
2 = 2 𝜏⋆ △ 𝑡 

𝜑 

⋆ 
3 = 0 . 5 𝜏⋆ △ 𝑡 

(14) 

2.4. Boundary conditions 

Dealing with Dirichlet conditions is straightforward. Dealing with 
Neumann conditions requires a more careful approach. In this last case, 
it is necessary to add new nodes outside the domain and to solve the 
system of equations given by means of the suitable discretization of the 
equations in the free surface as in Benito et al. [25] for P-SV waves or 
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