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In order to cope with the instability of the method of fundamental solutions (MFS), which caused by source offset,
source location, or a fictitious boundary, a generalized method of fundamental solutions (GMFS) is proposed.
The crucial part of the GMFS is using a generalized fundamental solution approximation (GFSA), which adopts
a bilinear combination of fundamental solutions to approximate, rather than the linear combination of the MFS.
Then the numerical solution of the GMFS is decided by a group of offsets corresponding to an intervention-point
diffusion (IPD), instead of the MFS’ offset of a single source. To demonstrate the effectiveness of the proposed

approach, five numerical examples are given. The results have shown that the GMFS is more accurate, stable,
and has a better convergence rate than the traditional MFS.

1. Introduction

In recent years the method of fundamental solutions (MFS), a bound-
ary meshless method, has attracted great attention for solving homoge-
neous differential equations [1-9]. The MFS is quite simple, efficient,
and easy for implementation, and it avoids the singular integrals which
is necessary in certain boundary meshless methods, such as BNM [10],
LBIE [11], HBNM [12], BCM [13], and BFM [14]. Furthermore, it could
be highly accurate and rapidly convergent when an appropriate offset
is selected [15].

However, despite the effectiveness and simplicity of the MFS, there
are still some outstanding theoretical and numerical issues to be ad-
dressed [16-18]. One of the main issues yet to be resolved is the choice
of the offset. In the MFS, a fictitious boundary outward offset to the real
boundary with a distance parameter d is required in order to define the
source points outside the domain. The offset d is sensitive and vital to
the accuracy of the MFS. It is possible that we could set a reasonable
range for the offset based on experience. However, it is not always ef-
fective, because a good offset for a certain problem could be bad for
another problem. Despite the intensive research, this “offset dilemma”
has been an outstanding research topic for the MFS [19,20].

In the past, various approaches have been proposed to alleviate this
difficulty in the MFS such as the BKM [21-23], BCM [24,25] and BPM
[26,27]. Instead of using the singular fundamental solutions as used in
the MFS, these methods use non-singular kernels or general solutions.
As such, the source points can be located on the real boundary, and the
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fictitious boundary is not needed. However, it is difficult to find the non-
singular kernels or general solutions for some practical problems. Even
though the non-singular kernels or general solutions can be found, the
accuracy is normally not very impressive.

Another proposed method worthy to mention is the non-singular
method of fundamental solutions (NMFS) [28,29]. For this method, a
desingularization technique is used to regularize the singularity of the
fundamental solution. The source points would then be located at the
real boundary, making the fictitious boundary not necessary. Neverthe-
less, drawbacks include the necessity for the boundary nodes be dis-
tributed regularly, desingularization for arbitrary problems may not be
available, and the tedious desingularization procedure compromises the
simplicity of the method.

The singular boundary method (SBM) [30-36] uses an origin in-
tensity factor (OIF) to substitute the singularity allowing the fictitious
boundary not to be necessary. However, choosing the OIFs is not a trivial
process, and the given problem must be solved twice.

Moreover, a boundary distributed source (BDS) method [37] should
be mentioned also. For the BDS method, the source points do not neces-
sarily need to be offset, but they should be distributed. The singular fun-
damental solution is integrated firstly over the distributed source cov-
ering the source points. If the distributed source is a simple shape, such
as a circle, then the singular integrals could be evaluated analytically.
However, the singular integrals are not always analytical, and the solu-
tion is inaccurate near the boundary regions. An improved BDS method
[38,39] uses a boundary-integral technique to determine the singular
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Fig. 1. Schematics of the GFSA: (a) regional IPD; (b) linear IPD.

integrals. However, this approach requires the singular integrals to be
calculated directly.

In some sense the above-mentioned efforts overcome the old chal-
lenge of the MFS at a price of introducing new obstacles. From our un-
derstanding, the tenacious barrier of the MFS is still open for improve-
ment. Thus, we will try to give another option for the issue of the MFS.

2. Generalized fundamental solution approximation

The MFS uses a fundamental solution approximation (FSA), which
was first proposed by Kupradze and Aleksidze [1,40-42], as the basis
function for solving homogeneous equations. It is notable that, another
independent work with the same concept was also proposed by Wen
[43] which is called the point intensity method (PIM). Let u(x) be a
field variable in a given domain Q bounded by I'. The basic idea of the
FSA is to express u(x) as a linear combination of fundamental solutions:

N

u(x) = Zajw(x,S) x€Q, ()
J=1

where y;(x,s) = yw(x, s;) = w(r)) is the fundamental solution,

ry=||x — s;||5 is the Euclidean norm between the measuring point x and
the source point sy, a; is the intensity coefficient at s;, and Q = QUT.

Being different from the FSA, the generalized fundamental solution
approximation (GFSA) uses a bilinear combination of fundamental so-
lutions to approximate u(x)as follows:
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where {sp}é Q is the intervention-point diffusion (IPD) of the source
node x; [44], N, is its point number, and Q; is the diffusion domain
centered at x; which is sheared off by the boundary I', as shown in
Fig. 1(a). Note that we use a superscript “J” in the function y to denote
a correspondence with the source node x;.

Note that the diffusion domain Q; could be arbitrarily selected out-
side the domain. For efficiency, we can also linearly diffuse the IPD,
such as {s,} eny (which is not strict), as shown in Fig. 1(b) where n; is
the outward normal at x;, and d, is the offset of an intervention point
Sp, as
dy= s, =%, p=1.2.0N, 3)

In this paper, a diffusion scheme to choose {s,} € n, is our focus. The
appropriate choice of N,,(> 5 is suggested) and offsets {d,,} is necessary.
By default, we choose

{d,} =(0.1:h,:05) R, @

26

where hp is the interval for {dp} diffused, e.g., if hp =0.1, then
{dp} =(0.1,0.2,0.3,0.4,0.5)R for Eq. (4). R is defined as the normalized
parameter for the boundary dimension

max (x;) — min (x;)
2

1

NG
in which the subscript is the component signal of the coordinates,
and D is the number of dimensions.

Obviously, when N, =1, the GFSA is equivalent to the FSA. In other
words, the GFSA is a generalized FSA. So we use a term of “generalized”
to denote the novel approximation and the corresponding numerical
method.
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3. Generalized method of fundamental solutions (GMFS)

Consider the following Laplace equation in a 2D domain Q bounded
by I

Viux)=0, xeQ 6)
subject to boundary conditions (BCs):
u(x) =a(x), xerl,, (@)
du _
u,(X) = 0_(X) =4(x), x€I, ®)
n

where I, is the Dirichlet boundary, I'; is the Neumann boundary, I'=T,
uT, I'y nT,=@, nis the outward normal of the boundary, and i, § are
the known functions on the boundary. The fundamental solution y for
the Laplacian is given by:
-1
—In(r), 2D,
2z
y(r) = &)
3D.
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The configuration of IPD (source-point cloud) of the GMFS is shown
in Fig. 2(a). In contrast, the sources of the MFS are shown in Fig. 2(b).
The target node x; is indexed for constructing the discrete system equa-
tions. We will first try to use the variation method. The functional vari-
ation is given as
ST, = Z Suu — i) + Z du,(u, —q).

x;€r, x;€l;

Let 811, = 0, then the BCs given by Egs. (7) and (8) are satisfied. Then

a GMFS1-type system of equations is obtained

10)
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