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In this paper, flow across a bluff cylinder with circular and equilateral triangular sections shapes at low Reynolds 

number (10 ≤ Re ≤ 250) is numerically investigated using the gradient smoothed method (GSM). The method 

was originally developed based on unstructured grids, which could be generated easily for complicated domains. 

For solving the incompressible flow, artificial compressibility terms are introduced in Navier–Stokes equations. 

The spatial derivatives of convective and viscous fluxes are obtained using the gradient smoothing operation. 

And the time marching is implemented based on the dual time stepping technique. The situations of steady flows 

with Re = 10–40 and unsteady flows with Re = 50 ∼250 are simulated. Analysis of the drag coefficients, root mean 

square (rms) value of lift coefficients and Strouhal number of circular and triangular cylinders has been carried 

out. Compared with both experimental and numerical reference solutions in the literatures, the accuracy of GSM 

results has been demonstrated. 

1. Introduction 

Generalized smoothing technique has been extensively used for solv- 
ing various physical problems after decades of development [1–5] . 
Based on strain smoothing technique, the smoothing finite element 
method (S-FEM) has been proposed. S-FEM has been applied to solve 
not only solid mechanics [6–8] but also acoustic [9–11] and heat trans- 
fer problems [ 12 , 13 ]. And the bubble function was introduced to further 
improve numerical stability [14–16] . The numerical solution can satisfy 
the divergence-free conditions. For hydromechanics, gradient smooth- 
ing technique has been extended to directly perform in the strong form 

formulation (Navier–Stokes equation) and such method is named as the 
gradient smoothing method (GSM) [17] . GSM has been used to solve 
the general hydrodynamic flows [18] , biomechanics [ 19 , 20 ] and fluid- 
structure interactions [ 21 , 22 ]. Intensive numerical tests have demon- 
strated that GSM can provide accurate, efficient and robust solutions, 
which is insensitive to mesh distortions. Thus, it would be interesting to 
further develop the GSM to simulate flow past a bluff body which is a 
classical hydrodynamics. 

In the framework of GSM, field variables are located at the ver- 
texes of the background grids. The spatial derivatives can be approxi- 
mated based on gradient smoothing operations [17] . And different kinds 
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smoothing functions and quadrature schemes can be chosen for approx- 
imating the first and second order derivatives. This can offer efficient, 
stable and accurate solutions by properly choosing the smoothing func- 
tions and quadrature schemes on even highly distorted unstructured 
grids [18] . 

Recently, most of the research efforts with GSM have been widely 
developed for different fluid flow problems. The GSM solution of incom- 
pressible flows problems is achieved using the artificial compressibility 
method [23] . And by incorporating the arbitrary Lagrangian–Eulerian 
(ALE) moving-mesh technique, fluid-structure interaction (FSI) problem 

can be solved [24] . By using adaptive grid technique, a high computa- 
tional efficiency is obtained in GSM. The adaptive GSM was also devel- 
oped to yield a set of optimal grids so that accurate results can be ob- 
tained using locally refined grid [2] . Based on previous research, GSM 

was further extended to solve three dimensions problems [25] . 
The main purpose of this work is to numerically study the flow 

around a bluff body at low Reynolds number using unstructured grids. 
Flow past bluff bodies has been the major concern in engineering, such 
as flow metering devices, structural design and acoustic emission. Thus 
it has been extensively studied with considerable experimental and nu- 
merical investigations. At very low Reynolds number, it is observed that 
the flow is symmetric and steady. And there is no separation occurring at 
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the surface of body. With the increasing of Reynolds number, the vortex 
shedding periodically from the body causes the instability of wake. Par- 
ticularly, this work will be dealing with the steady and unsteady wake 
behind the bluff body with different shapes, especially, the periodic drag 
coefficient and vortex shedding, which are also the interests of most of 
research [26–30] . And many experiment studies have investigated the 
steady and unsteady behaviors in the wake [31–34] . 

While, for numerical simulation, the previous research works on flow 

around a bluff body have used structured grids [35–37] . For complex 
shape domains, the structured grids generation is a larger burden in 
computational process. However, the unstructured grids can work with 
greater efficiency and more flexibility. Thus, the unstructured triangular 
grids in hydrodynamics are widely used in practical engineering. Coin- 
cidentally, the previous research efforts repeatedly demonstrated that 
the GSM solution with unstructured triangular grids is stable and accu- 
rate [ 17 , 18 , 38 ]. Thus GSM provides a good choice of solving the prob- 
lem using unstructured grids. In addition, the hydrodynamic behavior 
of flow past both circular and triangular cylinder is also exhibited and 
compared. 

In this paper, the Navier–Stokes equations are introduced in Section 
2 . The artificial compressibility terms are added for solving the incom- 
pressible flow. Then in Section 3 , a brief introduction of the principle of 
the GSM is provided. And the numerical method and boundary condi- 
tion are given. Section 4 presents the numerical results of reattachment 
length for steady solution. The Strouhal number and drag coefficients 
for unsteady solution are presented. This study visualizes steady and un- 
steady flow field. These results are obtained with the proposed GSM with 
Reynolds number varying from 10 to 250 and have been compared with 
experimental measurements and other numerical results in great detail. 
Some conclusions are derived in Section 5 . 

2. Mathematical formulation 

Two-dimensional incompressible Navier–Stokes equations in Carte- 
sian coordinate are written as follows [18] 
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where v x and v y are velocity components in x and y coordinates; 𝜌 is the 
density; t is physical time; and 𝜏 ij = 𝜇( v i,j + v j,i ) is stress tensor and 𝜇 is 
the kinematic viscosity. 

To solve the incompressible flows numerically, the most challenging 
task is how to overcome the pressure–velocity coupling. By adding ar- 
tificial compressibility terms, the governing equations can ensure their 
hyperbolic properties. And the pseudo-time derivatives are presented in 
Eq. (1) . Hence, the augmented governing equations become 
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where coefficient 𝛽p is the artificial compressibility, which represents 
the artificial sound speed. To guarantee the convergence in overall iter- 
ative procedure, the value of 𝛽p should be chosen carefully [18] . 

According to the pseudo time, it is clear that the augmented govern- 
ing equations with pressure and moment components exhibit hyperbolic 
properties. For unsteady flows, dual time stepping technique is applied 
in GSM. 

Fig. 1. Smoothing domain for an arbitrary point x i . 

3. Numerical method 

3.1. Gradient smoothing operation 

The general expression of the gradient at arbitrary location is given 
in the form of [17] 
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By integrating Eq. (3) by part and using divergence theorem, it be- 
comes 
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where ∇ is the gradient operator; U is the field variable; x i is Carte- 
sian coordinate in computational domain; �̂� is the smoothing function; 
Ωi is the gradient smoothing domain; Γi is the boundary of Ωi ; and n 

represents the unit normal vector on Γi , as shown in Fig. 1 . 
The smoothing functions in our study can be designed to be piece- 

wise constant as follow: 
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where A i represents the area of smoothing domain. Substitute Eq. 
(5) into Eq. (4) , it can be simplified as 
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Similar with first order derivative, the second order derivative can 
be further approximated by successfully using gradient smoothing op- 
eration. 
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In conclusion, the first and second order derivative of a field vari- 
ables can be obtained over smoothing domain according to Eqs. (6) and 
( 7 ). In computational domain, the triangular background cells are gen- 
erated. The storage location of variables is the vertexes of background 
grids. Based on the location of interested points, three types of corre- 
sponding gradient smoothing domains in GSM are developed. The con- 
structions of the node-associated GSD (nGSD), centroid-associated GSD 

(cGSD) and midpoint-associated GSD (mGSD) [17] are illustrated in Fig. 
2 . 

3.2. Discretization of governing equations 

3.2.1. Semi-discretized governing equations 

The conservative vector form of incompressible Navier–Stokes equa- 
tions can be expressed as 

𝐏 𝜕𝐐 
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