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a b s t r a c t 

This paper describes a new formulation of the dual reciprocity boundary element method (DRBEM) for two- 
dimensional transient convection–diffusion–reaction problems with variable velocity. The formulation decom- 
poses the velocity field into an average and a perturbation part, with the latter being treated using a dual reci- 
procity approximation to convert the domain integrals arising in the boundary element formulation into equiva- 
lent boundary integrals. The integral representation formula for the convection–diffusion–reaction problem with 
variable velocity is obtained from the Green’s second identity, using the fundamental solution of the correspond- 
ing steady-state equation with constant coefficients. A finite difference method (FDM) is used to simulate the 
time evolution procedure for solving the resulting system of equations. Numerical applications are included for 
three different benchmark examples for which analytical solutions are available, to establish the validity of the 
proposed approach and to demonstrate its efficiency. Finally, results obtained show that the DRBEM results are 
in excellent agreement with the analytical solutions and do not present oscillations or damping of the wave front, 
as it appears in other numerical techniques. 

1. Introduction 

The solution of convection–diffusion–reaction problems is a difficult 
task for all numerical methods because of the nature of the governing 
equation, which includes first-order and second-order partial deriva- 
tives in space [1–5] . The convection–diffusion equation is the basis of 
many physical and chemical phenomena, and its use has also spread 
in economics, financial forecasting and other fields [6] . The dual 
reciprocity boundary element method (DRBEM), initially applied to 
transient heat conduction problems by Wrobel et al. [7] , interprets the 
time derivative in the diffusion equation as a body force and employs 
the fundamental solution to the corresponding steady-state equation 
to generate a boundary integral equation. When the steady-state 
fundamental solution is used in the DRBEM to approximate transient 
convection–diffusion problems, other techniques should be employed 
to approximate the solution’s functional dependence on the tempo- 
ral variables. Aral and Tang [8] used the fundamental solution of the 
Laplace equation, but made use of a secondary reduction process, called 
SR-BEM, to arrive at a boundary-only formulation. They presented the 
results of transient convection–diffusion problems with or without first 
order chemical reaction for low to moderate Péclet numbers. Martin [9] 
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proposed a Schwartz waveform relaxation algorithm for the unsteady 
diffusive–convective equation, which uses domain decomposition 
methods and applies the iterative algorithm directly to the time- 
dependent problem. Partridge and Sensale [10] have used the method 
of fundamental solution with dual reciprocity and subdomain approach 
to solve convection–diffusion problems. The time integration scheme is 
the finite difference method (FDM) with a relaxation procedure, which 
is iterative in nature and needs a carefully selected time increment. 
Regarding the DRBEM formulation presented in this work, a backward 
finite difference scheme is adopted, Smith [11] . 

In this article, the DRBEM is also employed to discretise the spa- 
tial partial derivatives in the two-dimensional diffusive–convective–
reactive type problem. Thus, the problem is ultimately described in 
terms of boundary values only, consequently reducing its dimension- 
ality by one [12] . We use the fundamental solution to the steady-state 
convection–diffusion–reaction equation and transform the domain in- 
tegral arising from the time derivative term using a set of coordinate 
functions and particular solutions which satisfy the associated non- 
homogeneous steady-state convection–diffusion–reaction problem. Fur- 
ther, only a simple set of cubic radial basis functions has been previously 
used in this formulation. We consider two other sets of coordinate func- 
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Fig. 1. Definition of domain, boundary, and constant elements. 

tions, non-augmented thin plate splines (TPS) and multiquadric (MQ) ra- 
dial basis functions, and analyse their performance in conjunction with 
order of time integration algorithms for convection–diffusion–reaction 
problems. This work also focuses on the search for the optimal shape 
parameter when utilising the multiquadric radial basis function (MQ- 
RBF). This is due to the lack of information on choosing the best shape 
parameter, forcing the user having to make an ‘ad-hoc’ decision. Recent 
numerical experiments available in the literature, nevertheless, showed 
that the MQ-RBF has shown great potential when dealing with compli- 
cated PDEs in two dimensions if an adequate shape value is provided. 

A brief outline of the rest of this paper is as follows. Section 2 re- 
views the representation of convection–diffusion–reaction. Section 3 de- 
rives the boundary element formulation of the governing equation us- 
ing the steady-state fundamental solution of the corresponding equa- 
tion. In Sections 4 and 5 , the DRBEM formulation and its discretisation 
are developed for the 2D transient convection–diffusion–reaction prob- 
lem. A two-level time marching procedure for the proposed model is 
implemented in Section 6 . Section 7 gives the description of the co- 
ordinate functions and the choice of the three radial basis functions. 
Section 8 compares and investigates the solution profiles for the present 
numerical experiments with the analytical solution of the tested cases. 
Computational aspects are included to demonstrate the performance of 
the approach in Section 9 . Finally, some conclusions and remarks are 
provided in the last section. 

2. Convection–diffusion–reaction equation 

The two dimensional transient convection–diffusion–reaction prob- 
lem over a domain Ω in ℝ 

2 bounded by a boundary Γ, for isotropic 
materials, is governed by the following PDE: 

𝐷∇ 

2 𝜙( 𝑥, 𝑦 ) − 𝑣 𝑥 ( 𝑥, 𝑦 ) 
𝜕𝜙( 𝑥, 𝑦 ) 

𝜕𝑥 
− 𝑣 𝑦 ( 𝑥, 𝑦 ) 

𝜕𝜙( 𝑥, 𝑦 ) 
𝜕𝑦 

− 𝑘 𝜙( 𝑥, 𝑦 ) 

= 

𝜕𝜙( 𝑥, 𝑦 ) 
𝜕𝑡 

, ( 𝑥, 𝑦 ) ∈ Ω, 𝑡 > 0 (1) 

In Eq. (1) , 𝜙 represents the concentration of a substance, treated as a 
function of space and time. The velocity components v x and v y along 
the x and y directions and assumed to vary in space. Besides, D is the 
diffusivity coefficient and k represents the first-order reaction constant 
or adsorption coefficient. The boundary conditions are 

𝜙 = �̄� over Γ𝐷 (2) 

𝑞 = 

𝜕𝜙

𝜕𝑛 
= 𝑞 over Γ𝑁 

, (3) 

where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary 
with Γ = Γ𝐷 ∪ Γ𝑁 

, and Γ𝐷 ∩ Γ𝑁 

= 0 (see Fig. 1 ). The initial condition 
over the domain Ω is 

𝜙( 𝑥, 𝑦, 𝑡 = 0 ) = 𝜙0 ( 𝑥, 𝑦 ) , ( 𝑥, 𝑦 ) ∈ Ω (4) 

The parameter that describes the relative influence of the convective 
and diffusive components is called the Péclet number, Pé = |𝑣 |𝐿 ∕ 𝐷, 

Pé = |𝑣 |𝐿 ∕ 𝐷, where 𝑣 = 

(
𝑣 2 
𝑥 
+ 𝑣 2 

𝑦 

)1∕2 
is the velocity field and L is a char- 

acteristic length of the domain. For small values of Pé, Eq. (1) behaves 
as a parabolic differential equation in time, while for large values the 
equation becomes more like hyperbolic. These changes in the structure 
of the PDE according to the values of the Péclet number have significant 
effects on its numerical solution. 

3. Boundary element formulation of transient 

convection–diffusion–reaction problems using steady-state 

fundamental solution 

Let us consider a region Ω ⊂ ℝ 

2 bounded by a piecewise smooth 
boundary Γ. The transport of 𝜙 in the presence of a reaction term is gov- 
erned by the two-dimensional transient convection–diffusion–reaction 
Eq. (1) . The variable 𝜙 can be interpreted as temperature for heat trans- 
fer problems, concentration for dispersion problems, etc., and will be 
herein referred to as a potential. For the sake of obtaining an inte- 
gral equation equivalent to the above PDE, a fundamental solution of 
Eq. (1) is necessary. However, fundamental solutions are only available 
for the case of constant velocity fields. At this stage, the variable ve- 
locity components 𝑣 𝑥 = 𝑣 𝑥 ( 𝑥, 𝑦 ) and 𝑣 𝑦 = 𝑣 𝑦 ( 𝑥, 𝑦 ) are decomposed into 
average (constant) terms �̄� 𝑥 and �̄� 𝑦 , and perturbations 𝑃 𝑥 = 𝑃 𝑥 ( 𝑥, 𝑦 ) and 
𝑃 𝑦 = 𝑃 𝑦 ( 𝑥, 𝑦 ) , such that 

𝑣 𝑥 ( 𝑥, 𝑦 ) = �̄� 𝑥 + 𝑃 𝑥 ( 𝑥, 𝑦 ) , 𝑣 𝑦 ( 𝑥, 𝑦 ) = �̄� 𝑦 + 𝑃 𝑦 ( 𝑥, 𝑦 ) (5) 

Now, we can re-write Eq. (1) to take the form 

𝐷∇ 

2 𝜙( 𝑥, 𝑦 ) − �̄� 𝑥 ( 𝑥, 𝑦 ) 
𝜕𝜙( 𝑥, 𝑦 ) 

𝜕𝑥 
− �̄� 𝑦 ( 𝑥, 𝑦 ) 

𝜕𝜙( 𝑥, 𝑦 ) 
𝜕𝑦 

− 𝑘 𝜙( 𝑥, 𝑦 ) 

= 

𝜕𝜙( 𝑥, 𝑦 ) 
𝜕𝑡 

+ 𝑃 𝑥 
𝜕𝜙( 𝑥, 𝑦 ) 

𝜕𝑥 
+ 𝑃 𝑦 

𝜕𝜙( 𝑥, 𝑦 ) 
𝜕𝑦 

. (6) 

Next, one can transform the differential Eq. (6) into an equivalent 
integral equation as follows [12] : 

𝜙( 𝜉) − 𝐷 ∫Γ 𝜙
∗ 𝜕𝜙

𝜕𝑛 
𝑑Γ + 𝐷 ∫Γ 𝜙

𝜕 𝜙∗ 

𝜕𝑛 
𝑑Γ + ∫Γ 𝜙𝜙∗ �̄� 𝑛 𝑑Γ

= − ∫Ω
[ 
𝜕𝜙

𝜕𝑡 
+ 

( 

𝑃 𝑥 
𝜕𝜙

𝜕𝑥 
+ 𝑃 𝑦 

𝜕𝜙

𝜕𝑦 

) ] 
𝜙∗ 𝑑Ω, 𝜉 ∈ Ω (7) 

where �̄� 𝑛 = 𝑣.𝑛, n is the unit outward normal vector and the dot stands 
for scalar product and 𝑣 = 

(
𝑣 𝑥 , 𝑣 𝑦 

)
. In the above equation, 𝜙∗ is the 

fundamental solution of the steady-state convection–diffusion–reaction 
equation with constant coefficients. For two-dimensional problems, 𝜙∗ 

is given by 

𝜙∗ ( 𝜉, 𝜒) = 

1 
2 𝜋𝐷 

𝑒 
− 
(

�̄� .𝑟 

2 𝐷 

)
𝐾 0 ( 𝜇𝑟 ) , (8) 

where 

𝜇 = 

[ ( |�̄� |
2 𝐷 

) 2 
+ 

𝑘 

𝐷 

] 

1 
2 

, �̄� = 

(
�̄� 𝑥 , ̄𝑣 𝑦 

)
(9) 

in which 𝜉 and 𝜒 are the source and field points, respectively, and r is 
the modulus of r = |𝜒 − 𝜉|, the distance vector between the source and 
field points. The derivative of the fundamental solution with respect to 
the outward normal is given by 

𝜕 𝜙∗ 

𝜕𝑛 
= 

1 
2 𝜋𝐷 

𝑒 
− 
(

�̄� .𝑟 

2 𝐷 

)[ 
− 𝜇𝐾 1 ( 𝜇𝑟 ) 

𝜕𝑟 

𝜕𝑛 
− 

�̄� 𝑛 

2 𝐷 

𝐾 0 ( 𝜇𝑟 ) 
] 

(10) 

In the above, K 0 and K 1 are Bessel functions of second kind, of orders 
zero and one, respectively. The exponential term is responsible for the 
inclusion of the correct amount of ‘upwind’ into the formulation [13] . 
Eq. (7) is valid for source points 𝜉 inside the domain Ω. A similar ex- 
pression can be obtained, by implementing Green’s second identity and 
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