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A typical meshfree point interpolation method (PIM) is presented to investigate the dispersion error in the nu- 

merical solutions of acoustic problems which is governed by the Helmholtz equation. It is well-known that those 

results from several numerical approaches, such as the finite element method (FEM) and several meshfree tech- 

niques, will suffer from the pollution effect, leading to the incorrect acoustic wave propagation for high wave 

numbers. The reason for this phenomenon is that the numerical solutions of wave number do not accord with the 

exact wave number, which is the so-called dispersion issue. In addition, to overcome the possible singularity issue 

in constructing the shape functions for the PIM with the polynomial basis functions (PBFs), the Gauss–Jordan 

elimination (GJE) technique is employed here. Several numerical examples concerning dispersion analysis and 

acoustic wave propagation are performed to verify the accuracy of results from the PIM. It is found that the PIM 

can reduce the dispersion error effectively and hence generate more accurate results than the FEM with the same 

set of nodes. 

1. Introduction 

There exists an intense demand for accurately investigating and pre- 

dicting the acoustic propagation in order to achieve the requirements of 

special laws or regulations, such as depressing the ship cabin noise to 

improve passengers’ travel experience. During the past decades, various 

numerical approaches have been developed to fulfill this object. Among 

these methods, the finite element method (FEM) [1] and the boundary 

element method (BEM) [2–5] have become the most prevalent tools to 

address acoustic problems governed by the well-known Helmholtz equa- 

tion. The system matrices obtained from the classical BEM, however, are 

not sparse generally and not symmetrical when using the collocation 

method, resulting in the considerable difficulties in choosing the appro- 

priate computing methods and the increasing computational cost. Re- 

cently, an innovative singular boundary method (SBM) have been well 

devised to tackle acoustic problems [6,7] , which incorporates the origin 

intensity factor for the fundamental solution. This approach can effec- 

tively overcome some defects of the BEM but is still under development. 

As a result, the classical FEM which is constructed with the sparse 

and symmetrical system matrices is always preferred by many re- 

searchers to approximate the solutions to the Helmholtz equation. The 

results obtained from the FEM are always affected by the pollution ef- 

fect, which roots in the dispersion issue that the wave numbers from 
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the numerical approaches do not accord with the exact wave num- 

bers, especially for high wave numbers. With the aim to improve ac- 

curacy of the FEM for high wave numbers, the h -FEM and the hp -FEM 

are proposed [8,9] to relieve the dispersion error issue. These FEMs 

above incorporated with the high-quality mesh or the high-order poly- 

nomial basis would raise the computational cost greatly. Thus, sev- 

eral other improved FEMs have been developed for analyzing acous- 

tic problems, such as the Galerkin least-square (GLS) FEM [10] , the 

quasi-stabilized FEM (QSFEM) [11] , the residual-based FEM [12] . Un- 

fortunately, these methods still suffer from the limitations on either the 

insufficient effectiveness in depressing the dispersion error for the gen- 

eral two- and three-dimensional acoustic problems or being the rela- 

tively complicated in the formulation. Another approach called the par- 

tition of unity finite element method (PUFEM) in conjunction with a 

priori knowledge about finite element solution is proposed by Melenk 

and Babu š ka [13] , showing a great reduction of the dispersion error 

compared with the GLS and the QSFEM. However, this methodology 

may produce the ill conditioned system matrices for the finite element 

model, leading to a tough operation for resolving such series of system 

equations [14] . Moreover, another alternative way is to redistribute the 

mass matrix for balancing the stiffness and the mass of a discretized 

model [15–20] , which shows that the dispersion error can be reduced 

correspondingly. 
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From several researchers’ work [21–23] , it is found that the essen- 

tial root of the dispersion effect in solving acoustic problems may derive 

from the “overly-stiff” property of system stiffness matrix computed by 

several numerical approaches above. Hence, it is very crucial to find 

certain techniques that can properly “soften ” the numerical model. Re- 

cently, Liu and his research group have proposed a series of S-FEMs 

[24–27] , which combines the standard FEM with the gradient smoothing 

technique (GST) [28] on the basis of G space theory [29–31] , to tackle 

acoustic problems. The GST could properly relieve the excessive stiffness 

of the finite element model and hence render a proper numerical model 

whose system stiffness is closer to the exact model. Therefore, these S- 

FEMs [21–23,32–39] can provide the superior advantages to reduce the 

dispersion error and relatively ensure the accuracy of results for solving 

acoustic problems. Nevertheless, these mesh-based FEMs cannot easily 

be applicable to adaptive analysis due to the presence of mesh grids in 

the problem domain. In comparison with the procedure for the FEM, the 

major superiority of meshfree methods [40,41] over the FEM is that the 

mesh generation is not necessarily required in the formulation of shape 

functions, implying that it can get rid of manual operation on the pre- 

processor task (such as the mesh generation), and be automatic to tune 

the mesh density for interpolation by programming. Hence, meshfree 

methods could have a good adaptability for adaptive analysis. 

Meshfree methods are the relatively novel approaches to investigate 

acoustic problems. A typical meshfree method, called as the element- 

free Galerkin method (EFGM) [42] , was employed to analyze the pol- 

lution effect for acoustic problems by Bouillard and Suleau [43] . It is 

shown that the EFGM can eliminate the pollution error greatly in con- 

trast to the FEM for high wave numbers and hence have higher order 

of accuracy than the FEM. However, the EFGM using the moving least 

square method (MLS) has a tricky drawback that the essential (Dirich- 

let) boundary condition is relatively difficult to be implemented due to 

the lack of Kronecker Delta function property. 

Recently, a new meshfree method with the desirable nature of Kro- 

necker Delta function, which is named as the point interpolation method 

(PIM), is proposed by Liu [44] and Liu and Gu [45] , it has already shown 

a good adaptability to the field of solid mechanics [46–50] . Compared 

with the EFGM, this methodology can handle with the essential (Dirich- 

let) boundary condition as simple as the operation used in the FEM. The 

other major superiorities of this polynomial PIM are simple in the for- 

mulation of the shape functions and of high accuracy [45] , but the pos- 

sible singularity issue of the moment matrix is a key drawback which 

restrains the development of the PIM with the polynomial basis func- 

tions (PBFs). Therefore, a simple and effective Gauss-Jordan elimination 

(GJE) technique is utilized to overcome this issue in this paper, which 

will be detailed in the following section. Another way to overcome this 

issue is to replace the PBFs with the radial basis functions (RBFs), which 

is thereby called as the radial point interpolation method (RPIM) [46] . 

But the approximations from the RPIM might fail to be convergent in 

terms of the refinement of mesh owing to the lack of the ability to re- 

produce the linear field [51] . Hence, it is usually recommended that the 

RPIM should be augmented with the linear PBFs [45,51] . 

However, as far as the authors’ knowledge is concerned, the PIM 

with the PBFs has seldom been used to handle the Helmholtz problems, 

though the good features of this meshfree technique has already been 

demonstrated for the solid mechanics problems. This paper mainly fo- 

cuses on extending the application of the PIM with the PBFs from solid 

mechanics discipline to acoustic problems. Due to the good performance 

of the polynomial PIM in solving solid mechanics problems, it is ex- 

pected that the PIM with the PBFs will also behave better in controlling 

the dispersion error and could provide much more accurate numeri- 

cal solutions in analyzing acoustic problems than the conventional FEM 

with the same set of field nodes. 

This work is organized as the following. In Section 2 , we briefly in- 

troduced the derivation of the corresponding governing equations for 

acoustic problems. The formulation of the PIM is conducted with the 

GJE technique for overcoming the singularity issue in Section 3 . In 

Section 4 , the knowledge of dispersion analysis is illustrated with the 

detailed formula derivations. Several numerical examples are presented 

in the Section 5 . Finally, several conclusions can be drawn regarding the 

advantages of the PIM with the PBFs in Section 6 . 

2. Acoustic problems governed by the Helmholtz equation 

2.1. Governing equations for acoustic problems 

Acoustic wave propagation in the acoustic medium is governed by 

the wave equation expressed by 

∇ 

2 𝑃 − 

1 
𝑐 2 

𝜕 2 𝑃 

𝜕 𝑡 2 
= 0 (1) 

where t denotes the time variable, c represents the acoustic velocity in 

the acoustic medium and P is the harmonic acoustic pressure described 

as 

𝑃 ( 𝐱, 𝑡 ) = 𝑝 ( 𝐱 ) 𝑒 𝑗𝜔𝑡 (2) 

in which 𝜔 is the angular frequency and p ( x ) signifies the complex acous- 

tic pressure. 

By substituting Eq. (2) into Eq. (1) , the well-known Helmholtz equa- 

tion is derived as 

∇ 

2 𝑝 + 𝑘 2 𝑝 = 0 (3) 

where k is the wave number defined by 𝑘 = 𝜔 ∕ 𝑐 . 
Providing that the domain Ω of the acoustic problem is enclosed by 

the boundary Γ consisting of the segments of three different boundary 

conditions, such that 

Γ = Γ𝐷 

∪ Γ𝑁 

∪ Γ𝑅 (4) 

where ΓD denotes the Dirichlet boundary expressed as 

𝑝 = �̄� (5) 

ΓN denotes the Neumann boundary indicated as 

𝜕𝑝 

𝜕𝐧 
= − 𝑗𝜌𝜔 ̄𝑣 𝑛 (6) 

and ΓR denotes the Robin boundary defined as 

𝜕𝑝 

𝜕𝐧 
= − 𝑗𝜌𝜔 𝐴 𝑛 𝑝 (7) 

in which n represents the outward normal vector of certain boundary, �̄� 𝑛 
stands for the normal velocity along the boundary, A n is the admittance 

coefficient and 𝜌 is the density of the acoustic medium. 

For acoustic problems, the gradient of acoustic pressure p is related 

to the particle velocity v of acoustic wave by the equation of motion, 

which can be expressed by 

∇ 𝑝 + 𝑗𝜌𝜔𝑣 = 0 (8) 

2.2. Weak form for acoustic problems 

Here, the weighted residual method is employed to address the 

Helmholtz equation, which yields an integration over the entire domain 

Ω as follow 

− ∫Ω 𝑤 ( ∇ 

2 𝑝 + 𝑘 2 𝑝 )dΩ = 0 (9) 

in which w is the test function. 

Using the Green’s theorem, Eq. (9) leads to 

∫Ω ∇ 𝑤 ⋅ ∇ 𝑝 dΩ − 𝑘 2 ∫Ω 𝑤 ⋅ 𝑝 dΩ − ∫Γ 𝑤 ( ∇ 𝑝 ⋅ 𝐧 ) dΓ = 0 (10) 

By substituting the Neumann boundary condition and the Robin 

boundary condition into Eq. (10) , the weak form of the Helmholtz equa- 

tion can be expressed as 
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