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a b s t r a c t 

The generalized finite difference method (GFDM) is a relatively new meshless method for the numerical solution 

of certain boundary value problems. The method uses the Taylor series expansions and the moving least squares 

approximation to derive explicit formulae for the required partial derivatives of unknown variables. In this paper, 

we document the first attempt to apply the GFDM for the numerical solution of two-dimensional (2D) multi- 

layered elastic problems. A multi-domain GFDM scheme is proposed to model the composite (layered) elastic 

materials. The composite material considered is decomposed into several sub-domains and, in each sub-domain, 

the solution is approximated by using the GFDM-type expansion. On the subdomain interface, compatibility 

of displacements and equilibrium of tractions are imposed. Preliminary numerical experiments show that the 

introduced multi-domain GFDM is very promising for accurate and efficient numerical simulations of multi- 

layered materials. 

1. Introduction 

Following the rapid improvement of industrial technology, more and 
more new materials have been synthesized, designed and utilized in re- 
cent years. Among these materials, the multi-layered materials which 
contain single or multiple layers have been widely utilized in industrial 
application to improve machining performance [1–4] . The coating lay- 
ers can protect the substrate material against adhesion diffusion and in- 
tensive abrasive wear, due to their better temperature and wear resistant 
properties. However, the rather complex and expensive experimental in- 
vestigations on composite (layered) materials underlie a general lack of 
the analytical or numerical modeling efforts which can accurately and 
efficiently predict the performances of multi-layered coating structures 
[5–8] . 

The well-established and widely applied finite element method 
(FEM) offers without doubt many advantages in solving multi-layered 
problems due to its flexibilities in dealing with the geometry, loading 
type and nonlinearities of the coating layers. The FEM itself, however, 
has also many inherent shortcomings especially when a re-meshing is 
required or when the elements become highly distorted [9,10] . As an 
alternative numerical approach, the boundary element method (BEM) 
can be applied efficiently to avoid such shortcomings become of the 
boundary-only discretization and its semi-analytical nature. In the past 
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two decades, the BEM has been rapidly improved and can be nowadays 
considered as a competing method to the FEM. As a price paid for such 
a merit, the classical BEM, however, has to compute various singular 
and/or nearly singular integrals over the boundary elements, which is 
usually a cumbersome and non-trivial task [11–17] . 

Over the past two decades, some considerable effort was devoted 
to circumventing the shortcomings associated with the classical FEM 

and BEM methods. This drives to the development of various meshless 
methods which require neither domain nor boundary meshing [18–20] . 
The meshless methods still require discretization via sets of boundary 
and/or domain nodes, but these nodes need not have any connectivity 
and the trial functions are built entirely in terms these scattered irregular 
clouds of nodes. For an overview of the state of the art, we refer the 
readers to Refs. [16,21–25] , as well as the references therein. 

The generalized finite difference method (GFDM) is a relatively new 

meshless method. The main idea of the method is to combine the Taylor 
series expansion and the moving-least squares (MLS) approximation to 
derive explicit formulae for the required partial derivatives of unknown 
variables. The derivatives of unknown variables, and then, can be ap- 
proximated by a linear combination of function values with respect to its 
neighboring nodes. The key idea of the GFDM was proposed in the early 
eighties by Lizska and Orkisz [26,27] and were later essentially extended 
and improved by many other authors [28–37] . Prior to this study, this 
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method has been successfully tried for 2D and 3D parabolic and hyper- 
bolic equations [30,38,39] , third- and fourth-order partial differential 
equations [40] , dynamic analysis of beams and plates [41] , non-linear 
elliptic partial differential equations [42] , and applied inverse problems 
[31,43,44] . In recent years, several other meshless methods have been 
considered and developed by researchers to obtain numerical solutions 
for different types of partial differential equations. The methods include, 
but are not limited to, the element-free Galerkin (EFG) method [45] , 
the local radial point interpolation method (LRPIM) [46] , the meshless 
local Petrov-Galerkin (MLPG) method [47] , the boundary point interpo- 
lation method (BPIM) [48] , the method of fundamental solutions (MFS) 
[49] , and the singular boundary method (SBM) [25] . Each of the above- 
mentioned methods has its own merits and demerits. Interested readers 
are referred to excellent overview articles [24,25,45] on the develop- 
ment of this topic. 

In this paper, we extend the GFDM to problems of stress analysis in 
multi-layered elastic materials. The multi-layered problems under con- 
sideration in this paper are solved using a non-overlapping domain de- 
composition method (DDM), in which the composite material is decom- 
posed into several sub-domains and, in each sub-domain, the solution is 
approximated by using the GFDM-type expansion. On the subdomain in- 
terface, compatibility of displacements and equilibrium of tractions are 
imposed. These interface continuity conditions are satisfied in a least- 
squares sense in the same way as the boundary conditions of the prob- 
lem. There are two main forms of the DDMs, which are the overlapping 
DDM and non-overlapping DDM. As compared to overlapping methods, 
the non-overlapping DDM has become very appalling for its inherent 
parallelism and flexibility. We refer to the papers [50,51] for theoret- 
ical and numerical results for non-overlapping DDM and to the refer- 
ences given there. In recent decades, the combination of the DDM and 
other methods has been proposed for the numerical solutions of elastic 
problems in layered materials. In Ref. [52] , Berger and Karageorghis 
used the method of fundamental solutions (MFS) to deal with the stress 
analysis in layered elastic materials. In Ref. [53] , Gu et al. applied the 
meshless singular boundary method (SBM) in conjunction with domain 
decomposition technique for the stress analysis of layered elastic mate- 
rials. In Ref. [54] , Yan et al. employed a local RBF collocation method 
for solving elastic waves in multi-layered functionally graded materials. 

A brief outline of the rest of the paper is organized as follows. In 
Section 2 , the GFDM formulation and its numerical implementation for 
the solution of general 2D elastic problems are briefly discussed. A multi- 
domain GFDM scheme for the solution of multi-layered elastic problems 
is presented in Section 3 . In Section 4 , three benchmark numerical ex- 
amples are presented to validate the computational code and assess the 
performances of the proposed GFDM scheme. Finally, some conclusions 
and remarks are provided in Section 5 . 

2. The GFDM for isotropic problems in linear elasticity 

2.1. Statement of the basic problem 

The equilibrium equations for 2D problems in linear elasticity, in 
terms of the displacements, u i ( x ), i = 1, 2, can be stated as [4] { 
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subject to the boundary conditions 

𝑢 𝑖 ( 𝒙 ) = 𝑢̄ 𝑖 ( 𝒙 ) 𝒙 ∈ Γ𝑢 ( Dirichlet boundary conditions ) , (3) 

𝑡 𝑖 ( 𝒙 ) = 𝜎𝑖𝑗 ( 𝒙 ) 𝑛 𝑗 ( 𝒙 ) = ̄𝑡 𝑖 ( 𝒙 ) 𝒙 ∈ Γ𝑡 ( Neumann boundary conditions ) , (4) 

where x = ( x 1 , x 2 ), 𝜇 is the Poisson’s ratio, t i ( x ) denotes the component 
of boundary traction in the i th coordinate direction, n j ( x ) are the out- 
ward unit normal vector, Γu and Γt construct the whole boundary of the 

Fig. 1. An irregular cloud of points and the selection of stars in the GFDM. 

domain Ω, ̄𝑢 𝑖 and ̄𝑡 𝑖 represent the prescribed displacements and tractions, 
respectively, f 1 ( x ) and f 2 ( x ) in Eqs. (1) and ( 2 ) denote the inhomoge- 
neous terms. Here and in the following, the customary Einstein’s nota- 
tion for summation over repeated subscripts is applied. The kinematics 
of deformation is described by the linear strain tensor 

𝜀 𝑖𝑗 ( 𝒙 ) = 

1 
2 

{ 
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where sufficiently small displacements and displacement gradients are 
assumed. The stresses 𝜎ij ( x ) are related to the strains 𝜀 ij ( x ) through gen- 
eralized Hooke’s law by 

𝜎𝑖𝑗 ( 𝒙 ) = 2 𝐺 

( 
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, (6) 

where G stands for the shear modulus, 𝛿ij is the well-known Kronecker 
delta. The boundary tractions t i ( x ), i = 1, 2, are defined in terms of the 
stresses as 

𝑡 𝑖 ( 𝒙 ) = 𝜎𝑖𝑗 ( 𝒙 ) 𝑛 𝑗 ( 𝒙 ) , 𝒙 ∈ Γ. (7) 

Eqs. (1) –( 7 ) completely describe the isotropic problems in linear elas- 
ticity. 

2.2. Explicit formulae in GFDM 

Without loss of generality, let us consider the following general dif- 
ferential equation in the 2D domain [42] 
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or for brevity 

𝐿 2 [ 𝑈 ] = 𝑓 ( 𝒙 ) , (9) 

where L 2 [ U ] is a second-order partial differential operator, f ( x ) is known 
function, a i , i = 1, 2, ..., 5, are constants. 

In order to obtain the explicit GFDM formulae for partial differential 
equations, an irregular cloud of points is scattered in the computational 
domain (see Fig. 1 ). For each given node x 0 , named as the central node, 
the m nearest nodes x i ( i = 1, 2, ..., m ), called the neighbors or supporting 
nodes, will be found within a prescribed distance d m 

from the central 
node x 0 , i.e., | x i − x 0 | ≤ d m 

. The concept of the ‘ star ’ then refers to the 
area of all supporting nodes in relation to the central node [38] . Each 
node scattered inside the computational domain has an associated star 
assigned. 

Suppose U 0 is the value of the function at the central node x 0 and 
U i , i = 1, 2, ..., m , are function values at the rest of the nodes inside the 
star. Expanding the values of U i around the central point x 0 using the 
Taylor series expansion, we have [39,55] 
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