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a b s t r a c t 

This paper presents a semi-analytical approach to solve anti-plane dynamic Green’s functions for an elastic in- 

finitely extended isotropic solid (matrix) containing multiple circular inclusions with imperfect interfaces. A 

linear spring model with vanishing thickness is employed to character the imperfect interface. The multipole 

expansions of anti-plane displacement of the matrix and inclusion, induced by a time-harmonic anti-plane line 

force located in the matrix or in the inclusion, are expanded by using Hankel and Bessel functions, respectively. 

The imperfect interface condition is satisfied by uniformly collocating points along the interface of each inclu- 

sion. For the imperfect interface condition, the normal derivative of the anti-plane displacement with respect to 

a non-local polar coordinate system is developed without any truncation error for multiply-connected domain 

problems. For the case of one circular inclusion, the proposed quasi-static stress field matches well with the an- 

alytical static solution. The proposed quasi-static stress fields containing two and three circular inclusions are 

critically compared with those calculated by static analysis using the finite element method. Finally, extensive 

studies are presented to investigate the effects of the frequency of excitation, imperfect interface and separation 

between inclusions on the dynamic Green’s functions. 

1. Introduction 

Time-harmonic Green’s functions can be applied to formulate the 
boundary element method for the eigenvalue problems [1,2] and can 
also be used to deal with Eshelby inclusion problems [3–5] and scat- 
tering problems in elastodynamics [6–8] . Extensive studies have been 
carried out on dynamic Green’s functions for homogeneous media by 
using various analytical methods [9–13] . Senjuntichai and Rajapakse 
[9] analytically constructed dynamic Green’s functions of homogeneous 
poroelastic half-plane problem using Fourier integral transforms. Norris 
[10] derived the three-dimensional dynamic Green’s functions in 
anisotropic piezoelectric, thermoelastic and poroelastic solids by using 
plane wave transform method. Based on the Radon transform method, 
Wang and Achenbach [11] presented three-dimensional time-harmonic 
elastodynamic Green’s functions for anisotropic solids, and Wang and 
Zhang [12] derived dynamic Green’s functions for linear piezoelectric 
solids. Wang and Zhong [13] derived the two-dimensional time- 
harmonic Green’s functions in transversely isotropic piezoelectric solids. 

In contrast, investigations on dynamic Green’s functions for com- 
posite materials are rarely reported in literature due to the fact that 
the corresponding dynamic Green’s functions are mathematically quite 
complicated. Wang and Sudak [14] analytical derived the antiplane 
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time-harmonic Green’s functions for a circular inhomogeneity with an 
imperfect interface. Khojasteh et al. devised three-dimensional dynamic 
Green’s functions in transversely isotropic bi-materials [15] and tri- 
materials [16] . Chen et al. [17] applied the null-field boundary integral 
equation method (BIEM) to derive anti-plane dynamic Green’s functions 
for several circular inclusions with imperfect interfaces. Recently, effi- 
cient procedures based on semi-analytical expansions are developed for 
Helmholtz BIEs on problems involving multiple disk-shaped scatterers 
[18,19] . 

In general, the Green’s function solution can be represented by two 
parts; one is the known singular solution that is the so-called funda- 
mental solution or the free-space Green’s function, and the other is the 
unknown regular part that is mainly incorporated to satisfy the speci- 
fied boundary conditions for the problem under consideration. Most of 
Green’s functions found in the literature are analytically expressed in 
closed or series forms. However it is not the case for some complicated 
problems and then Telles et al. [20] proposed the numerical Green’s 
functions in the formulation of the boundary element method for 
solving the fracture mechanics. Consequently, the collocation multi- 
pole method is presented to semi-analytically solve dynamic Green’s 
functions for an elastic infinitely extended isotropic solid (matrix) 
containing multiple circular inclusions with imperfect interfaces. 
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Fig. 1. An elastic infinitely extended isotropic solid (matrix) containing multi- 

ple circular inclusions with imperfect interfaces subjected to a time harmonic 

anti-plane line force located at 𝜻 . 

The multipole method for solving multiply-connected domain 
problems was first proposed by Z ̇a vi 

⌣ 

s ka [21] , the multipole expansion 
being the so called the wave function expansion. The addition theorem 

is often employed to transform the multipole expansion into one of the 
local coordinate systems, attached to the center of each object such as 
an inclusion, to satisfy the specified boundary conditions. In the case of 
the circular boundary, some applications can be seen in the interaction 
of waves with arrays of circular cylinders [22] , the free vibration of 
circular membranes [23] and circular plates [24] and flexural wave 
scattering [25] by using the addition theorem for Bessel functions. In 
the view point of mathematics, the procedure is exact and elegant. 
But we need to face the complicated formulation and the associated 
numerical calculation, and then its development is limited because the 
addition theorem involves complicated infinite series. 

In this work, a collocation multipole approach is presented to semi- 
analytically solve the dynamic Green’s function for an elastic infinitely 
extended isotropic solid (matrix) containing multiple circular inclusions 
with imperfect interfaces. The multiple expansions for the regular part 
of dynamic Green’s functions are represented in terms of the Bessel 
or Hankel functions. Instead of using the complicated addition theo- 
rem, when considering the imperfect interface condition, the normal 
derivative with respect to non-local polar coordinate systems is exactly 
calculated by using the directional derivative. The imperfect interfaces 
condition can be satisfied by distributing collocation points along the 
interface of each inclusion. By truncating the high order terms of the 
multipole expansion, a coupled finite linear algebraic system is derived. 
The anti-plane displacement fields are obtained through the solution of 
the algebraic system. The proposed results are compared with available 
analytical solutions and numerical results using the FEM. Several numer- 
ical results are presented to investigate the influence of the frequency 
of excitation, imperfect interface and separation between inclusions on 
the dynamic Green’s functions for the problem under consideration. 

2. Problem statement and the general solution in the polar 

coordinate system 

An elastic infinitely extended isotropic solid (matrix) containing N I 

circular inclusions subjected to a time-harmonic anti-plane line force of 
strength fe − i 𝜔 t located at 𝜻 as shown in Fig. 1 , where 𝜔 is the circular 
frequency, B j denotes the j th boundary, j = 1,…, N I . There are N I + 1 
observer coordinate systems used to describe the present problem: 
( x, y ) is a global Cartesian coordinate system centered at O ; ( r j , 𝜃j ) is 

the j th local polar coordinate system centered at O j , attached to the 
center of the j th circle, with global Cartesian coordinates ( x j , y j ). 

When a time-harmonic anti-plane line force is applied to the matrix, 
the induced out-of-plane displacement fields satisfy the following 
equation in the polar coordinate system 

1 
𝑟 

𝜕 

𝜕𝑟 

( 

𝑟 
𝜕 𝑤 𝑃 ( 𝒙 ) 

𝜕𝑟 

) 
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where w P is the anti-plane displacement field of the matrix, 𝛿() is the 
Dirac delta function and k P = 𝜔 / c P is the wave number of the matrix. 
When the inclusion is subjected to a time-harmonic anti-plane line 
force, the governing equation for the anti-plane displacement field of 
the inclusion is given by the following equation 
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where k I = 𝜔 / c I is the wave number for the inclusion. 𝜇P and 𝜇I are the 
shear moduli of the matrix and inclusion, c P and c I are the shear wave 
speed, ΩP and ΩI are regions occupied by the matrix and inclusion, re- 
spectively. For the sake of convenience, the time factor e − i 𝜔 t associated 
with all the field variables has been omitted. The induced stresses are 
defined by 

𝜎𝑃 
𝑧𝑟 

= 𝜇𝑃 
𝜕 𝑤 𝑃 
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𝜎𝐼 
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, 𝒙 ∈ Ω𝐼 . (4) 

Moreover, the circular interface between the matrix and inclusion is 
assumed to be imperfect in this work. The imperfect interface boundary 
condition is given by Wang and Meguid [26] 

𝜎𝐼 
𝑧𝑟 

= 𝜎𝑃 
𝑧𝑟 

= 𝛽( 𝑤 𝑃 − 𝑤 𝐼 ) , (5) 

where the non-negative constant 𝛽 is the imperfect interface parameter. 
The circular inclusion is perfectly bonded to the matrix as 𝛽 approaches 
infinity. On the other hand, the circular inclusion is fully debonded to 
the matrix as 𝛽 approaches zero. When the wave number k approaches 
zero, the Helmholtz equation is reduced to the Laplace equation. 

In polar coordinates, the Helmholtz equation has separated solutions 
of the form 

𝐽 𝑚 ( 𝑘𝑟 ) 𝑒 𝑖𝑚𝜃, 𝑌 𝑚 ( 𝑘𝑟 ) 𝑒 𝑖𝑚𝜃, 𝐻 

(1) 
𝑚 
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𝑚 
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where J m 

and Y m 

are the m th-order Bessel functions of the first and 
the second kind, respectively, and 𝐻 

(1) ( 2) 
𝑚 ( 𝑘𝑟 ) = 𝐽 𝑚 ( 𝑘𝑟 ) ± 𝑖 𝑌 𝑚 ( 𝑘𝑟 ) are 

the Hankel functions of the first and the second kind [27] . Since the 
functional value of the Bessel function of Y m 

is infinite at the origin, 
the permissible solution is 

𝑤 
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for the interior domain and 
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(1) 
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(1) 
𝑚 

( 𝑘𝑟 ) , (7) 

for the exterior domain, where the coefficients a m 

and b m 

are deter- 
mined by using the imperfect interface boundary conditions. 

3. The multipole method 

The dynamic Green’s function problem is to solve Eqs. (1) and 
(2) subjected to the imperfect interface conditions on each circular 
interface. From Eq (7) , we can express the general solution of the 
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