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a b s t r a c t 

A Finite Element-Boundary Integral Equation (FE-BIE) coupling method is proposed to investigate a flexible bar 

weakly attached to an elastic orthotropic half-plane. Firstly, the analysis focused on the case of a bar subjected to 

horizontal forces and thermal loads considering interfacial displacements linearly proportional to the tangential 

traction. Secondly, the debonding behaviour of a composite reinforcement glued to a substrate has been mod- 

elled. Using an incremental nonlinear analysis, a bilinear elastic-softening interfacial traction-slip law has been 

implemented simulating the delamination of pure mode II. Finally, the influence of the anchorage length on the 

ultimate bearing capacity of the adhesive joint has been investigated. 

1. Introduction 

In the last few decades, strengthening of existing concrete and ma- 
sonry structures [1] , and rehabilitation of steel structures [2] have 
emerged as a cutting edge issue in structural engineering. Particularly, 
the use of fibre reinforced polymer (FRP) strips has become more and 
more common than ever before, as it has proved to be a rapid and effi- 
cient technical solution. Moreover, thin film-based devices and coated 
systems have been widely employed, remarkably in fields of aerospace 
and electronic engineering. There are plenty of studies focused on the 
issue of strengthening reinforced concrete (RC) members with exter- 
nally bonded FRP sheets [3] . For these applications, a simple reference 
model may be a straight elastic stiffener of prescribed length bonded to 
an elastic substrate in plane state that can debond in pure mode II only. 
Moreover, bending stiffness of the stiffener may be disregarded because 
of negligible thickness. Consequently, the stiffener is not able to sustain 
transverse loads and no peeling stresses can arise at the interface. 

In 1932, Melan studied the problem of a point force applied to an 
infinite stiffener bonded to an infinite linear elastic sheet [4] . Several 
authors have reconsidered and extended Melan’s problem, especially for 
stiffened plate in aircraft structures and FRP strengthened RC structures. 
Early studies concerning stiffeners welded to an elastic substrate have 
adopted a series approximation method to solve singular integral equa- 
tions including a proper Green function, see [5] and references cited 
therein. Perfect adherence hypothesis was relaxed in [6] , where the ad- 
hesive interface was substituted by a set of independent linear elastic 
springs. This classical assumption [7] is frequently referred to as weak 
or imperfect interface and for a soft thin adhesive connecting two adher- 
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ents was justified making use of asymptotic expansion methods of the 
corresponding three-dimensional elastic problem [8] . However, correc- 
tion terms may be required at the adhesive ends [9] . For the case of an 
FRP plate glued to a rigid substrate, a closed-form analytical solution of 
shear-out test has been presented in [10] , assuming an elastic-softening 
bilinear bond law at the adhesive interface and fracture behaviour in 
mode II along the interface. In the same framework, the effect of the 
substrate elasticity has been considered in [11,12] , using a series ap- 
proximation method. Alternatively, a stress analysis combined with lin- 
ear elastic fracture mechanics can be used to evaluate the critical de- 
lamination condition for RC beams strengthened with FRP strips [13] . 

Finite element procedures based on continuum damage models are 
required whenever the fracture behaviour involves the substrate [14–
16] . Accurate results have been obtained in [17–20] using a regularised 
extended FE approach to interpret delamination tests in FRP strength- 
ened concrete. Nonetheless, the FE approach undergoes important limi- 
tations when applied to film-substrate systems [21,22] because a refined 
mesh has to be used to describe the thin layer of the film. Furthermore, 
to simulate the half-plane, FE meshes should be extended to a region 
significantly greater than the contact area; thus increasing the compu- 
tational burden. 

Boundary Element (BE) techniques can be used to evaluate the me- 
chanical behaviour of coated systems involving thin layers, provided 
that the nearly-singular integrals arising in the BE formulations are 
correctly handled [23,24] . Symmetric Galerkin boundary element tech- 
niques for cohesive interface problems are presented in [25,26] , where 
the nonlinear behaviour has been localised at the interface only. More- 
over, reference [26] considered both substrate and reinforcement as lin- 
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ear elastic bodies and showed that a bar model is computationally more 
efficient than that of a thin layer. 

For bars and beams resting on two-dimensional substrates, a Finite 
Element-Boundary Integral Equation (FE-BIE) coupling method is well 
suited to provide very accurate solutions at a low computational cost. 
To date, several problems have been analysed with the FE-BIE cou- 
pling method, such as thin films bonded to an isotropic elastic substrate 
subjected to thermal or axial loads [27] and Euler-Bernoulli and Timo- 
shenko beams in frictionless [29,30] or adhesive contact [31,32] with 
an elastic half-plane, including buckling problems [33,34] . 

In particular, the FE-BIE coupling method makes use of a mixed vari- 
ational formulation including the Green function of the substrate, and 
assumes as independent fields both the nodal displacements and the con- 
tact tractions. It is worth noting that only the structure in contact with 
the substrate boundary has to be discretised. In addition, the mechani- 
cal response of the half-plane is represented through a weakly singular 
integral equation, whose solution is given analytically, avoiding singu- 
lar and hyper-singular integrals typically involved in the classical BE 
formulation. For the mixed problem at hand, useful mathematical ref- 
erences are [35,36] , where well-posedness of the variational problem 

and the corresponding Galerkin solution are set in the proper functional 
framework. 

In the present paper, the FE-BIE coupling method is used introducing 
a slip between a flexible bar and an elastic orthotropic half-plane. To the 
authors’ knowledge, the present proposal represents a new contribution. 

First, the slip is assumed linearly proportional to the interface reac- 
tions. The cases of a bar subjected to a point force or a uniform thermal 
variation are investigated. 

In the second part of this paper, incremental nonlinear analysis of 
the proposed model is adopted to investigate the delamination of an FRP 
strengthened RC substrate. The analysis of the interfacial reaction turns 
out to be important to predict the detachment phenomenon. The gov- 
erning parameters of constitutive laws for adhesive interfaces must gen- 
erally be estimated from experiments. However, the experimental deter- 
mination of the mechanical properties of an adhesive is a complex task. 
These properties can be obtained by shear-out tests adopting different 
layouts, such as single slipping test with fixed back side or double pull- 
out shear schemes [37,38] . Simple formulations for debonding analysis 
are generally based on a priori analytical expressions describing the in- 
terface bond-slip law calibrated from experimental results. In these for- 
mulations, a fracture process in pure mode II is considered, disregarding 
the effects due to interface normal tractions (peeling) and out-of-plane 
displacements (uplift). The interface peeling stress and uplift develop 
due to eccentricity between applied force and interface and can be ex- 
perimentally observed through advanced optical systems [39] . Although 
these components affect the ultimate bearing capacity of the adhesive 
joint, their influence on the distribution of interface slip throughout the 
contact region is negligible [40] . 

In the present model, an incremental analysis with displacement con- 
trol has been used assuming a bilinear bond-slip law, and the results 
have been compared with those of experimental tests and analytical for- 
mulations found in the literature. 

2. Variational formulation 

An elastic bar with length L and cross section A attached to an elas- 
tic half-plane is considered, as shown in Fig. 1 . Reference is made to a 
Cartesian coordinate system (O, x, z ) centred at the midsection of the 
bar, with the vertical axis z directed toward the half-plane and the x -axis 
placed along the interface. Both the bar and the semi-infinite substrate 
are made of homogeneous and isotropic solids. Elastic constants E b and 
𝜈b respectively denote the Young modulus and the Poisson coefficient of 
the bar, whereas E s and 𝜈s characterise the substrate. Generalised plane 
stress or plane strain regimes are considered. For plane strain, the width 
b of the half-plane will be assumed unitary. The thickness of the coat- 
ing is assumed thin, so making possible to neglect its bending stiffness. 

In the absence of peeling stresses, only tangential tractions r x ( x ) occur 
along the contact region. The bar is subjected to a generically distributed 
horizontal load p x ( x ) or thermal variation ΔT ( x ). 

Unlike the perfect adhesion case proposed in [27] , the relaxed adhe- 
sion is representative of the mechanical characteristics of the adhesive 
connecting the bar with the substrate. This assumption involves the loss 
of continuity between bar displacement u x,b and half-plane displacement 
u x,s . 

2.1. Total potential energy for the bar 

The strain energy of a bar can be written as follows [28] : 

𝑈 bar = 

1 
2 ∫𝐿 

𝐸 0 𝐴 ( 𝑥 ) 
[
𝑢 ′𝑥,𝑏 ( 𝑥 ) − 𝛼0 Δ𝑇 

]2 
𝑑𝑥 , (1) 

where prime denotes differentiation with respect to x , and the Young 
modulus E 0 and the coefficient of thermal expansion 𝛼0 of the bar 
are E 0 = E b , 𝛼0 = 𝛼b for a generalised plane stress, and E 0 = E b /(1 − 𝜈2 

𝑏 
), 

𝛼0 = (1 + 𝜈b ) 𝛼b for a plane strain state. Noteworthy, the axial force in the 
bar is N ( x ) = E 0 A ( x )[ u ′ x,b ( x ) − 𝛼0 ΔT ]. The potential energy Πbar can be 
written as the strain energy U bar minus the work related to the external 
loads: 

Πbar = 𝑈 bar − 𝑏 ∫𝐿 

[
𝑝 𝑥 ( 𝑥 ) − 𝑟 𝑥 ( 𝑥 ) 

]
𝑢 𝑥,𝑏 ( 𝑥 ) 𝑑𝑥 . (2) 

2.2. Total potential energy for the substrate 

The solution to the elastic problem for a homogeneous isotropic half- 
plane loaded by a point force tangential to its boundary is referred to 
as the Cerruti solution [41] . For a point force P x ( ̂𝑥 ) applied to the half- 
plane boundary at the coordinates �̂� ( Fig. 2 ), the closed form expression 
for the surface displacement u x , s ( x ) = g ( x , ̂𝑥 ) P x ( ̂𝑥 ), where the Green func- 
tion g ( x , ̂𝑥 ) is: 

𝑔( 𝑥, ̂𝑥 ) = − 

2 
𝜋𝐸 

ln |𝑥 − �̂� |
𝑑 

. (3) 

In Eq. (3) , E = E s or E = E s /(1 − 𝜈2 
𝑠 
) in the plane stress or plane strain, 

respectively, and d is an arbitrary length associated with a rigid displace- 
ment. The horizontal displacement u x,s ( x ) due to the interfacial tractions 
r x ( x ) acting along the boundary between the half-plane and the bar can 
be found as 

𝑢 𝑥,𝑠 ( 𝑥 ) = ∫𝐿 

𝑔( 𝑥, ̂𝑥 ) 𝑟 𝑥 ( ̂𝑥 )d ̂𝑥 . (4) 

Making use of the theorem of work and energy for exterior domains 
[42] , it can be shown that the total potential energy Πsoil for the half- 
plane equals one half the work of external loads [27,29] : 

Πsoil = − 

𝑏 

2 ∫𝐿 

𝑟 𝑥 ( 𝑥 ) 𝑢 𝑥,𝑠 ( 𝑥 ) d 𝑥 . (5) 

By introducing Eq. (4) into Eq. (5) , one obtains 

Πsoil = − 

𝑏 

2 ∫𝐿 

𝑟 𝑥 ( 𝑥 ) d 𝑥 ∫𝐿 

𝑔( 𝑥, ̂𝑥 ) 𝑟 𝑥 ( ̂𝑥 ) d ̂𝑥 . (6) 

2.3. Total potential energy for the adhesive 

A displacement jump occurs when a stiffener is glued to a support 
by means of an adhesive. In the following, the transmission traction r x 
is assumed proportional to the slip Δu x = u x, b − u x,s between the bar and 
the half-plane displacements 

𝑟 𝑥 = 𝑘 𝑥 Δ𝑢 𝑥 , (7) 

where parameter k x summarises the mechanical characteristics of the 
interface [8] . Making use of Eq. (7) , the total potential energy for the 
adhesive can be written as 

Πspring = 

𝑏 

2 ∫𝐿 

𝑟 𝑥 ( 𝑥 ) Δ𝑢 𝑥 ( 𝑥 ) d 𝑥 − 𝑏 ∫𝐿 

𝑟 𝑥 ( 𝑥 ) Δ𝑢 𝑥 ( 𝑥 ) d 𝑥 = − 

𝑏 

2 ∫𝐿 

𝑟 2 
𝑥 
( 𝑥 ) 
𝑘 𝑥 

d 𝑥 . 

(8) 
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