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In the current work, meshless methods are proposed to solve two-dimensional interface heat equation having 

closed interface boundary, in regular and irregular geometry as well as in regular and irregular interface settings. 

The current work extends applications of the conventional Kansa approach and the modified integrated RBF 

approach to numerical solution of interface PDE models. Accuracy of the meshless methods is confirmed through 

numerical experiments in both regular and irregular interface boundaries for a given set of problems. A set of 

scattered nodes (Halton points) is considered on both sides of the interface. Numerical evidence reveals accurate 

performance of the meshless methods for different test problems. 

1. Introduction 

Meshless methods remain the only choice among state of the art ro- 
bust numerical methods for solving partial differential equations (PDEs), 
especially, in the situations where only scattered data is available in the 
complex shaped domain. Meshless methods can be accurately applied 
to variety of challenging PDEs embodying complex dynamics. Interface 
modeling gives birth to such complicated class of PDEs. Development of 
accurate numerical methods for such general type of interface problems 
arising from physical interface conditions containing jumps in a solution 
and its flux along the irregular boundary, is still at nascent stage. 

Meshless methods are becoming increasingly popular for solving 
complex partial differential equations (PDEs), because of flexibility, ease 
of implementation and extension to higher dimensional complex geom- 
etry. Like other numerical methods, meshless methods establish numeri- 
cal solution of PDEs, by forming a system of algebraic equations over the 
whole domain without using a pre-defined mesh or grid, for discretiza- 
tion. Meshless methods can use a set of either scattered or uniform nodes 
in the domain and on the boundaries. Other conventional methods such 
as finite-difference methods, finite-volume methods and finite-element 
methods require connected points, cells or elements in the form of mesh 
or grid to discretize the computational domain. These methods cannot 
be implemented on irregular geometries when only scattered data is 
available. 

Various numerical meshless procedures have been developed in the 
literature for solving PDEs numerically. Among them are the meshless 
local Petrov–Galerkin method [1,2] , the method of fundamental solu- 
tion [3–6] , the singular boundary method [7,8] , the boundary knot 
method [9,10] and the radial basis collocation methods [11–15] . Mesh- 
less methods based on radial basis functions (RBFs) have gained much 
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attention in recent years. In [16] , a comparison of Multiqudric and its 
modified forms (integrated form) is discussed, which revealed that the 
integrated RBF may produce accurate results over a wide range of shape 
parameter. The RBFs that have been integrated several times appeared 
to be superior to the standard non-integrated RBFs, when the function 
being approximated is sufficiently smooth. 

In integrated RBF method, the original RBF is integrated one or more 
times with respect to r to get new basis functions. When the original RBF 
is integrated n times and n is odd, the method is accurate and poorly con- 
ditioned for large values of shape parameter. But when n is even and the 
shape parameter is small, the method is accurate and poorly conditioned 
[17] . In the present study, we consider 𝑛 = 6 i.e., the MQ RBF is inte- 
grated six times with respect to r . In different papers, integrated RBFs are 
applied to solve differential equations numerically. For instance, twice 
integrated MQ RBF with a fixed constant value of 𝜖 is used to solve one- 
dimensional boundary value problems [18] . A multi-domain integrated 
radial basis function collocation method is discussed for elliptic prob- 
lems in [19] . In papers [20,21] , the integrated RBF method is used to 
solve high-order ODEs and PDEs. More detail can be found in [16,22–
24] . 

Numerical solutions of various interface parabolic and elliptic PDEs 
related to mathematical modeling of diffusion-transport related pro- 
cesses [25–32] , are challenges ridden. Such type of PDEs have wide 
ranging applications in science and engineering. Parabolic interface 
problems of type (1) can be found in the food engineering, metal casting 
and hyperthermia therapy of tumor. Exact solution of such problems is 
often not available, especially when the interface is irregularly shaped. 
On the other hand, standard numerical methods often perform poorly 
for such time dependent interface problems, due to non-smooth or 
even discontinuous solution of the problem across the interfaces. Jump 
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conditions related to the solution and flux across the interface need to 
be incorporated in the numerical formulation in a proper way, to restore 
accuracy of the method in the interface region. If the jump conditions 
are not incorporated correctly in the numerical formulation, the stan- 
dard numerical methods are destined to fail. 

A meshless collocation method is reported in [29] for one- 
dimensional elliptic interface problems. A two-dimensional steady state 
heterogeneous conduction and Bioheat transfer problem with inter- 
face conditions [33] are investigated through radial basis collocation 
method. A steady-state linearized Poisson–Boltzmann problem, Poisson 
equation and steady-state Bioheat equation with interface conditions 
are solved numerically by meshless methods [12] . In [34] , numerical 
solution of two-dimensional elastic wave equation is obtained through 
radial basis function. Numerical solution of heat transfer equilibrium 

problems having a smoothly curved interface are analyzed through ra- 
dial basis function-generated finite-difference method [35] . 

In the present paper, meshless methods are used to solve two- 
dimensional parabolic interface problems with regular as well irregu- 
lar outer and inner facial boundaries. Both integrated and conventional 
RBFs are used to collocate the solution on scattered and uniform nodal 
points. In some cases, we have used uniform nodal points for the pur- 
pose of comparison with the available numerical methods, whose per- 
formance is restricted to uniform nodal points only. For the current set 
of problems, accuracy of the integrated RBF collocation method is found 
better than the Kansa method due to less sensitivity to the shape param- 
eter. 

2. Governing equation 

Consider a two-dimensional heat equation [31] 

𝜕 

𝜕𝑡 
𝑢 ( 𝑥, 𝑦, 𝑡 ) = ∇ . ( 𝛽∇ 𝑢 ( 𝑥, 𝑦, 𝑡 ) ) + 𝑓 ( 𝑥, 𝑦, 𝑡 ) , in Ω = Ω+ ∪ Ω− , (1) 

where f ( x, y, t ) is a source term, u ( x, y, t ) is the unknown function of 
interest, and 𝛽 is the diffusion coefficient. The function u ( x, y, t ) is given 
on the boundary 𝜕Ω as 

𝑢 ( 𝑥, 𝑦, 𝑡 ) = 𝑔( 𝑥, 𝑦, 𝑡 ) , for ( 𝑥, 𝑦 ) ∈ 𝜕Ω. (2) 

The diffusion coefficient 𝛽 in (1) is discontinuous across the material 
interface Γ separating two media Ω+ and Ω− i.e., 

𝛽 = 

{ 

𝛽− in Ω− , 

𝛽+ in Ω+ . 

The solutions 𝑢 + ( x ) (in the solution domain Ω+ ) and 𝑢 − ( x ) (in the so- 
lution domain Ω− ) on both sides of the interface Γ are related through 
jump conditions as 

[ 𝑢 ] = 𝑢 + ( 𝑥, 𝑦, 𝑡 ) − 𝑢 − ( 𝑥, 𝑦, 𝑡 ) = 𝑤 ( 𝑠, 𝑡 ) , on Γ, 

[ 𝛽𝑢 𝑛 ] = 𝛽+ 
𝜕 

𝜕𝑛 
𝑢 + ( 𝑥, 𝑦, 𝑡 ) − 𝛽− 

𝜕 

𝜕𝑛 
𝑢 − ( 𝑥, 𝑦, 𝑡 ) = 𝑣 ( 𝑠, 𝑡 ) , on Γ, (3) 

where s is the arc-length parameterization of Γ and n is the unit normal 
direction. 

3. The method 

We approximate the time derivative in (1) by first-order forward- 
difference approximation 

𝜕 

𝜕𝑡 
𝑢 ( 𝑥, 𝑦, 𝑡 ) = 

𝑢 ( 𝑥, 𝑦, 𝑡 ) − 𝑢 ( 𝑥, 𝑦, 𝑡 0 ) 
𝑑𝑡 

, (4) 

where dt is the time-step, t 0 is the starting time of every time-step and 𝑡 = 

𝑡 0 + 𝑑𝑡 be the next time value. We consider the following fully implicit 
formulation 

𝑢 ( 𝑥, 𝑦, 𝑡 ) − 𝑑𝑡 ( ∇ . ( 𝛽∇ 𝑢 ( 𝑥, 𝑦, 𝑡 )) ) = 𝑢 ( 𝑥, 𝑦, 𝑡 0 ) + 𝑑𝑡𝑓 ( 𝑥, 𝑦, 𝑡 ) , in Ω. (5) 

Fig. 1. A domain with irregular boundary and irregular interface. 

3.1. Identification of collocation points 

A set of scattered nodes is selected in the computational domain 
Ω and on the boundary 𝜕Ω, which consist of four disjoint subsets (see 
Fig. 1 ). We assume that none of these subset is empty and x 1 , x 2 , x 3 and 
x 4 be the sets of discrete collocation points in the sub-domains Ω− , Ω+ , 

the boundary 𝜕Ω and the interface Γ, respectively. We further assume 
that the total number of collocation points in Ω+ , Ω− , 𝜕Ω and Γ are 𝑁 

+ , 

𝑁 

− , 𝐾 

+ and 𝐾 

− respectively. Alternatively, they are represented as 

x 1 = 

[(
𝑥 1 1 , 𝑦 1 1 

)
, 

(
𝑥 1 2 , 𝑦 1 2 

)
, … , 

(
𝑥 1 𝑁 − , 𝑦 1 𝑁 − 

)]𝑇 
⊂ Ω− , 

x 2 = 

[(
𝑥 2 1 , 𝑦 2 1 

)
, 

(
𝑥 2 2 , 𝑦 2 2 

)
, … , 

(
𝑥 2 𝑁 + , 𝑦 2 𝑁 + 

)]𝑇 
⊂ Ω+ , 

x 3 = 

[(
𝑥 3 1 , 𝑦 3 1 

)
, 

(
𝑥 3 2 , 𝑦 3 2 

)
, … , 

(
𝑥 3 𝐾 + , 𝑦 3 𝐾 + 

)]𝑇 
⊂ 𝜕Ω, 

x 4 = 

[(
𝑥 4 1 , 𝑦 4 1 

)
, 

(
𝑥 4 2 , 𝑦 4 2 

)
, … , 

(
𝑥 4 𝐾 − , 𝑦 4 𝐾 − 

)]𝑇 
⊂ Γ, (6) 

where the superscript T represents transpose of the vectors. 

3.2. Radial basis functions 

In the present work, two types of RBFs are chosen for numerical so- 
lution of parabolic interface problems [12] . These functions are defined 
as 

𝜙( ‖𝑟 ‖) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

[√ 

1 + ( 𝜖‖𝑟 ‖) 2 {40 ( 𝜖‖𝑟 ‖) 6 − 1518 ( 𝜖‖𝑟 ‖) 4 + 1779 ( 𝜖‖𝑟 ‖) 2 − 128 
}
+ 

105 𝜖‖𝑟 ‖ sinh −1 ( 𝜖‖𝑟 ‖) {8 ( 𝜖‖𝑟 ‖) 4 − 20 ( 𝜖‖𝑟 ‖) 2 + 5 
}]
∕201600 𝜖6 , √

1 + 𝑐 2 ‖𝑟 ‖2 , 
(7) 

where ‖r ‖ is a normed radial distance on a given dimension. The shape 
parameters c and 𝜖 control shapes of the respective radial basis func- 
tions. In RBF collocation method, the meshless solution of (1) is calcu- 
lated separately in each sub-domain at time t as 

𝑢̂ ( 𝑥, 𝑦, 𝑡 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

𝑢 + ( 𝑥, 𝑦, 𝑡 ) = 𝜆1 ( 𝑡 ) 𝜙+ 1 ( 𝑥, 𝑦 ) + 𝜆2 ( 𝑡 ) 𝜙+ 2 ( 𝑥, 𝑦 ) + ⋯ 

+ 𝜆𝑁 + 𝑠 
( 𝑡 ) 𝜙+ 

𝑁 + 𝑠 
( 𝑥, 𝑦 ) , in Ω+ , 

𝑢 − ( 𝑥, 𝑦, 𝑡 ) = 𝜎1 ( 𝑡 ) 𝜙− 1 ( 𝑥, 𝑦 ) + 𝜎2 ( 𝑡 ) 𝜙− 2 ( 𝑥, 𝑦 ) + ⋯ 

+ 𝜎𝑁 − 𝑠 
( 𝑡 ) 𝜙− 

𝑁 − 𝑠 
( 𝑥, 𝑦 ) , in Ω− , 

(8) 

where 𝑁 

− 
𝑠 

and 𝑁 

+ 
𝑠 

are the number of source points in the sub-domains 
Ω− and Ω+ , respectively. The collocation points and the source points 
are same in the present study. The function 

𝜙( 𝑥, 𝑦 ) = 

{ 

𝜙+ 
𝑖 
( 𝑥, 𝑦 ) = 𝜙+ ( ‖( 𝑥, 𝑦 ) − ( 𝑥 𝑖 , 𝑦 𝑖 ) ‖2 ) , 𝑖 = 1 , 2 , 3 , … , 𝑁 

+ 
𝑠 

in Ω+ , 

𝜙− 
𝑗 
( 𝑥, 𝑦 ) = 𝜙− ( ‖( 𝑥, 𝑦 ) − ( 𝑥 𝑗 , 𝑦 𝑗 ) ‖2 ) , 𝑗 = 1 , 2 , 3 , … , 𝑁 

− 
𝑠 

in Ω− . 
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