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In this paper, a closed-form particular solution of polyharmonic splines has been obtained for high order partial 

differential operators. Instead of using complex derivation, the new particular solution is derived simply by 

adding or subtracting several available particular solutions. The proposed particular solution is further coupled 

with polynomial basis for numerically solving thin plate problems. The relationship between number of nodes and 

order of polynomials are fully studied. Numerical examples with irregular domains are presented to demonstrate 

the effectiveness of the proposed algorithm. 

1. Introduction 

During the last decade, radial basis functions (RBFs) have been suc- 

cessfully applied for solving various kinds of partial differential equa- 

tions (PDEs) [3] . In contrast to the traditional meshed methods [1,2,19] , 

the main attraction of the RBFs collocation methods is due to the sim- 

plicity of the solution procedure in which no tedious boundary and/or 

domain meshing is required. One category of the RBF based methods 

is the collocation method, which is simple and flexible with respect to 

the geometry of the domain [12] . However, the instability of colloca- 

tion methods in dealing with derivatives has limited its ability in real 

applications. Many numerical techniques are proposed to enhance the 

instability of the RBF collocation method [9,22–25] . 

The RBF collocation process of solving PDEs can be done in two dif- 

ferent ways. In the direct RBF collocation method, an RBF expansion 

is introduced with unknown coefficients for the solution of the PDE, 

then differentiated and collocated. On the other hand, the indirect RBF 

collocation can be done by integration instead of differentiation. The ex- 

perimental data (inhomogeneous term) are interpolated by RBFs, then 

integrated in the polar coordinate system and collocated strictly on the 

governing equation and boundary conditions. The method of approxi- 

mated particular solutions (MAPS) is a recently developed indirect RBF 

collocation method [4,5,21] , which is slightly more accurate compared 

to the direct RBF collocation method [18] . These indirect methods need 

a closed-form particular solutions of the related RBFs. 

Particular solutions are very popular in solving inhomogeneous 

equations for boundary type meshless methods, which split the partial 

differential equation (PDE) into homogeneous and inhomogeneous solu- 
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tions [8,14–17,20] . The closed-form particular solutions for many com- 

monly used RBFs of differential operators have been derived [7] . The 

derivation of particular solutions to Helmholtz-type equations using thin 

plate splines is firstly proposed by Chen and Rashed [6] . Then the con- 

cept was further extended to the polyharmonic splines [10,17] . Works 

based on particular solutions are mainly focus on simplifying the deriva- 

tion of particular solutions for different PDEs; however, the derivation 

techniques of particular solutions sometimes are still too tedious to be 

applied for complex differential operators [20] . 

Instead of using the complex derivation perviously, a new closed- 

form particular solution of thin plate splines for high order harmonic 

differential operators are simply expressed by using the particular solu- 

tions of Laplacian and Helmholtz-type operators. The proposed particu- 

lar solution is further coupled with polynomial for numerically solving 

high order PDEs based on the MAPS. The details of the nodes number 

and the order of polynomial are fully studied. 

The organization of this paper is as follows. In Section 2 , we in- 

troduce the formulation of the MAPS. The derivation of the new close 

particular solution are presented in Section 3 . In Section 4 , numerical 

examples of different problems are considered. Some conclusions of this 

paper with opening issues and future applications are given in the last 

section. 

2. The formulation of the MAPS 

Let us consider an thin plate vibration problem, (
Δ2 − 𝜆2 

)
𝑢 ( 𝒙 ) = 𝑓 ( 𝒙 ) , 𝒙 ∈ Ω, (1) 

Δ𝑢 ( 𝒙 ) = 𝑔 ( 𝒙 ) , 𝒙 ∈ 𝜕Ω, (2) 
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𝑢 ( 𝒙 ) = ℎ ( 𝒙 ) , 𝒙 ∈ 𝜕Ω, (3) 

where 𝜆 is a non-zero constant, Δ is the Laplacian differential operator, 

f , g and h are given functions, Ω is bounded and closed domain with 

boundary 𝜕Ω. 

We know that the polynomial basis functions of degree less or equal 

than s in 2D case can be explicitly written as follows: 

{ 𝑝 
𝑙 
} 𝑞 
𝑙=1 = { 𝑥 𝑖 − 𝑗 𝑦 𝑗 ∶ 0 ≤ 𝑗 ≤ 𝑖, 0 ≤ 𝑖 ≤ 𝑠 } 

= {1 , 𝑥, 𝑦, 𝑥 2 , 𝑥𝑦, 𝑦 2 , … , 𝑥 𝑠 , 𝑥 𝑠 −1 𝑦, 𝑥 𝑠 −2 𝑦 2 , … , 𝑥𝑦 𝑠 −1 , 𝑦 𝑠 } , (4) 

where 𝑞 = ( 𝑠 + 1)( 𝑠 + 2)∕2 is the number of polynomial basis functions 

with order s . Let { 𝒙 𝑗 } 
𝑁 𝑖 
𝑗=1 be a set of interior points in Ω and { 𝒙 𝑗 } 

𝑁 𝑖 + 𝑁 𝑏 
𝑗= 𝑁 𝑖 +1 

be the boundary points on 𝜕Ω and 𝑁 = 𝑁 𝑖 + 𝑁 𝑏 be the total number of 

collocation points. In the MAPS, we assume the solution (1) –(3) can be 

approximated by the particular solutions of polyharmonic splines and 

polynomials basis in the following way: 

𝑢 ( 𝒙 ) = 

𝑁 ∑
𝑗=1 
𝑎 𝑗 Φ

(
𝑟 𝑗 
)
+ 

𝑞 ∑
𝑙=1 
𝛽𝑙 𝑝 𝑙 ( 𝒙 ) , 𝒙 ∈ Ω, (5) 

where a j and 𝛽
𝑙 

are the unknown coefficients, 𝑟 𝑗 = ‖𝒙 − 𝒙 𝑗 ‖ are the Eu- 

clidean norm, Φ is the RBF particular solution related to 𝜙, which can 

be expressed as 

(Δ2 − 𝜆2 )Φ( 𝑟 ) = 𝜙( 𝑟 ) = 𝑟 2 𝑛 ln ( 𝑟 ) , (6) 

where 𝜙( 𝑟 ) = 𝑟 2 𝑛 ln ( 𝑟 ) is the polyharmonic splines, and n denotes the or- 

der of polyharmonic splines. 𝑝 
𝑙 

is the particular solution of the aug- 

mented polynomial basis, which can be expressed as (
Δ2 − 𝜆2 

)
𝑝 
𝑙 
= 𝑥 𝑎 − 𝑏 𝑦 𝑏 , 0 ≤ 𝑏 ≤ 𝑎, 0 ≤ 𝑎 ≤ 𝑠, (7) 

where s is the order of polynomial basis, x and y are coordinates of the 

point 𝒙 = ( 𝑥, 𝑦 ) . By substituting (5) into (1) , we have 

𝐿𝑢 
(
𝒙 𝑖 
)
= 

𝑁 ∑
𝑗=1 
𝑎 𝑗 𝜙( 𝑟 𝑖𝑗 ) + 

𝑞 ∑
𝑙=1 
𝛽
𝑙 
𝐿𝑝 

𝑙 

(
𝒙 𝑖 
)
, 𝑖 = 1 …𝑁 𝑖 , (8) 

where L is the differential operator Δ2 − 𝜆2 . The standard polynomial 

insolvency constraint must be applied to deal with additional degrees of 

freedoms in (8) 

𝑁 ∑
𝑗=1 
𝑎 𝑙 𝐿𝑝 𝑙 

(
𝒙 𝑗 
)
= 0 , 𝑙 = 1 , 2 , … 𝑞. (9) 

On the boundary we have 

𝐵 𝑢 
(
𝒙 𝑖 
)
= 

𝑁 ∑
𝑗=1 
𝑎 𝑗 𝐵 Φ

(
𝑟 𝑖𝑗 

)
+ 

𝑞 ∑
𝑙=1 
𝛽𝑙 𝐵 𝑝 𝑙 

(
𝒙 𝑖 
)
, 𝑖 = 𝑁 𝑖 + 1 , … , 𝑁, (10) 

𝑁 𝑏 ∑
𝑗=1 
𝑎 𝑛 𝑖 + 𝑙 𝐵𝑝 𝑙 

(
𝒙 𝑗 
)
= 0 , 𝑙 = 1 , 2 … 𝑞, (11) 

where N b is the number of the boundary nodes. Eqs (8) –(11) can be 

re-casted in a matrix form as 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝝓𝑁 𝑖 ×𝑁 𝐿 𝒑 𝑁 𝑖 ×𝑞 
Δ𝚽𝑁 𝑏 ×𝑁 Δ𝒑 𝑁 𝑏 ×𝑞 
𝚽𝑁 𝑏 ×𝑁 𝒑 𝑁 𝑏 ×𝑞 

[ 𝐿 𝒑 𝑇 
𝑁 𝑖 ×𝑞 

, Δ𝒑 𝑇 
𝑁 𝑏 ×𝑞 

, 𝒑 𝑇 
𝑁 𝑏 ×𝑞 

] 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
[ 
𝒂 𝑁×1 
𝜷𝑞×1 

] 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

f 

g 

h 

0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (12) 

where the undetermined coefficients a and 𝜷 can be obtained by solving 

the above linear system as long as the particular Φ and 𝑝 
𝑙 

are available. 

The formulated matrix is a non-square matrix since there are two types 

of boundary conditions in Eq. (12) . In order to reduce the formulated 

matrix to square, two types of boundary nodes are used according to 

boundary conditions (2) and (3) , as shown in Fig. 1 . 

The boundary condition (2) and (3) are, respectively, treated by con- 

sidering and boundary nodes as shown in Fig. 1 . The 

Fig. 1. Two different boundary nodes. 

formulated equation in (12) can be re-casted as 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝝓𝑁 𝑖 ×𝑁 𝐿 𝒑 𝑁 𝑖 ×𝑞 
Δ𝚽𝑁 𝑏 1 ×𝑁 

Δ𝒑 𝑁 𝑏 1 ×𝑞 
𝚽𝑁 𝑏 2 ×𝑁 

𝒑 𝑁 𝑏 2 ×𝑞 

[ 𝐿 𝒑 𝑇 
𝑁 𝑖 ×𝑞 

, Δ𝒑 𝑇 
𝑁 𝑏 1 ×𝑞 

, 𝒑 𝑇 
𝑁 𝑏 2 ×𝑞 

] 0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
[ 
𝒂 𝑁×1 
𝜷𝑞×1 

] 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

f 

g 

h 

0 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
, (13) 

where 𝑁 𝑏 = 𝑁 𝑏 1 
+ 𝑁 𝑏 2 

, 𝑁 𝑏 1 
and 𝑁 𝑏 2 

denote the number of and 

boundary nodes, respectively. The formulated matrix in (13) is 
transformed to a square matrix, and can be solved easily as long as the 

particular solutions are available. 

3. Particular solution of fourth order PDEs 

The key of the success of the MAPS is the availability of the par- 

ticular solution. The derivation of the particular solution is nontrivial 

and sometimes not even available, especially for higher order partial 

differential equations [20] . In this section, we introduce another way to 

evaluate the particular solution of the fourth order partial differential 

equations through the use of the particular solutions of the second order 

partial differential equations. First, we consider the particular solution 

of the following fourth order PDEs: (
Δ2 − 𝜆2 

)
Φ = 𝜙. (14) 

Instead of deriving the particular solution Φ from the above fourth order 

PDEs which could be tedious [20] , we start with the particular solutions 

of Helmholtz and modified Helmholtz equations which are available in 

the Appendix. 

( Δ − 𝜆) Φ𝑚 = 𝜙, (15) 

( Δ + 𝜆) Φℎ = 𝜙. (16) 

After multiplying (16) by Δ − 𝜆 and (15) by Δ + 𝜆, subtracting (15) from 

(16) leads to 

( Δ + 𝜆) ( Δ − 𝜆) Φ𝑚 − ( Δ + 𝜆) ( Δ − 𝜆) Φℎ = 2 𝜆𝜙, (17) 

it follows (
Δ2 − 𝜆2 

)( 

Φ𝑚 − Φℎ 
2 𝜆

) 

= 𝜙, (18) 

comparing (18) with (14) , we can get 

Φ = 

( 

Φ𝑚 − Φℎ 
2 𝜆

) 

. (19) 

The particular solution Φ in (14) can be expressed as a linear combi- 

nation of particular solutions of modified Helmholtz Φm and Helmholtz 

Φh . Putting (19) to (2) leads to 

ΔΦ = 

1 
2 𝜆

(ΔΦ𝑚 − ΔΦℎ ) , (20) 
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