
Engineering Analysis with Boundary Elements 93 (2018) 53–62 

Contents lists available at ScienceDirect 

Engineering Analysis with Boundary Elements 

journal homepage: www.elsevier.com/locate/enganabound 

Modelling the third kind boundary condition in scaled boundary finite 

element method based numerical analysis 

Wang Chongshuai, He Yiqian, Yang Haitian 

∗ 

State Key Lab of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Centre for Computational Mechanics, 

Dalian University of Technology, Dalian, 116024, Dalian, PR China 

a r t i c l e i n f o 

Keywords: 

Third kind boundary condition 

Scaled boundary finite element method 

Nonlinear 

Viscoelastic 

Cyclic symmetry 

a b s t r a c t 

Numerical models to deal with the third kind boundary condition (TKBC) are presented under the framework 

of Scaled Boundary Finite Element Method (SBFEM) for the 2-D static analysis. A gradient based algorithm is 

presented to tackle with nonlinear TKBC, and a temporally-piecewise adaptive algorithm is developed for a kind 

of time dependent TKBC. In addition, a proof that the appended stiffness matrix is block-circulant is given if 

the TKBC is cyclically symmetric, resulting in a reduction of computational expense of SBFEM based numerical 

analysis. Numerical examples are provided to verify proposed approaches, and satisfactory results are obtained. 

1. Introduction 

The third kind boundary condition usually describes relationships 

between variables and their derivatives along the boundary, and 

often appears in the simplification of modelling interactions between 

two structures, the impact of one structures on the another is often 

simplified as TKBC via linear/nonlinear or viscoelastic relationships 

between traction and displacement along the interface [1–6] Basically, 

numerical models to tackle with these boundary conditions are based 

on conventional finite element methods (FEM) using spring or spring- 

dashpot supports models, the contribution induced by TKBC can be 

described via an appended stiffness matrix [1,2] . When TKBC is non- 

linear, simple iterative scheme based algorithms are usually employed 

to solve the nonlinear system equation, resulting in lower computing 

efficiency [3,4] . On the other hand, there seems almost no direct report 

concerned with the time dependent TKBC in the static analysis [5,6] . 

In the context of Scaled Boundary Finite Element Method (SBFEM) 

[7,8] that is semi-analytical, and exhibits good performance in dealing 

with problems of stress singularities and unbounded domains [9–14] , 

but few works have been reported which attempts to deal with spring 

supports. 

In this paper, regarding to different TKBC, different numerical 

models are presented under the framework of SBFEM. A gradient 

based algorithm is presented to tackle with nonlinear TKBC, and a 

temporally-piecewise adaptive algorithm [15,16] is developed for a 

kind of time dependent TKBC. 

It is noteworthy to note that SBFEM could be more computationally 

expensive than FEM, mainly because an eigenvalue problem needs to 
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be solved in generating system equations [17] . Thus, a proof that the 

appended stiffness matrix is block-circulant is presented if TKBC is 

cyclically symmetric, resulting in a possible partitioning computation 

to reduce the computational cost. 

In the numerical verification, problems with nonlinear TKBC defined 

by dual-linear model, time dependent TKBC defined by a viscoelastic 

model, and cyclically symmetric TKBC are solved. 

The paper commences with governing equations of SBFEM with 

TKBC in Section 2 . Section 3 gives descriptions of TKBC. Section 4 pro- 

poses numerical algorithms for different kinds of TKBC and presents 

a proof that the appended stiffness matrix is block-circulant when the 

TKBC are cyclically symmetric. Section 5 provides a numerical verifi- 

cation via three examples, and the Section 6 summarizes conclusions. 

2. Governing equations of SBFEM 

The SBFEM introduces a normalised radial coordinate system 

by scaling the domain boundary relative to a scaling centre ( x 0 , y 0 ) 

selected within the domain, as shown in Fig. 1 . The normalised radial 

coordinate 𝜉 runs from the scaling centre towards the boundary, the 

other circumferential coordinate s specifies a distance around the 

boundary from an origin on the boundary. 

For two-dimensional elastostatic problems, the SBFEM obtains an 

approximate solution using the weighted summation of n modes, such 

that the displacement at any point within a domain is [9] 

𝐮 ( 𝜉, 𝑠 ) = 𝐍 ( 𝑠 ) 𝐮 𝐡 ( 𝜉) (1) 

where N ( s ) refers to a matrix of circumferential shape functions apply- 

ing for all lines with a constant 𝜉. The unknown vector u h ( 𝜉) is a set of 

functions analytical in 𝜉. 
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Fig. 1. Scaled boundary coordinate system. 

The stresses are obtained by multiplying the strains (obtained from 

the displacement field using a linear operator) and the elasticity matrix 

D in the form [9] 

𝛔( 𝜉, 𝑠 ) = 𝐃 𝐁 

1 ( 𝑠 ) 𝐮 𝐡 ( 𝜉) ,𝜉 + 

1 
𝜉
𝐃 𝐁 

2 ( 𝑠 ) 𝐮 𝐡 ( 𝜉) (2) 

By the virtue of the virtual displacement principle, one has (in the 

absence of body force) 

∫𝑉 

𝛿𝛆 ( 𝜉, 𝑠 ) 𝑇 𝛔( 𝜉, 𝑠 ) d 𝑉 − ∫𝑠 

𝛿𝐮 ( 𝑠 ) 𝑇 𝐩 ( 𝑠 ) d 𝑠 = 0 (3) 

The virtual strain field is of the form 

𝛿𝛆 ( 𝜉, 𝑠 ) = 𝐁 

1 ( 𝑠 ) 
[
𝛿𝐮 ( 𝜉) ,𝜉

]
+ 

1 
𝜉
𝐁 

2 ( 𝑠 ) [ 𝛿𝐮 ( 𝜉) ] (4) 

where 𝛿u ( 𝜉) refers to the vector of virtual displacement. 

Utilizing Eq. (1) and substituting Eqs. (2) and (3) into Eq. (4) , the 

virtual work equation becomes 

𝛿𝐮 𝑇 
(
𝐄 

0 𝐮 𝐡 ( 𝜉) ,𝜉 + 𝐄 

1 𝐮 𝐡 ( 𝜉) 
)
− 𝛿𝐮 𝑇 𝐏 

− ∫
1 

0 
𝛿𝐮 ( 𝜉) 𝑇 

[ 
𝐄 

0 𝜉𝐮 𝐡 ( 𝜉) ,𝜉𝜉 + 

(
𝐄 

0 + 𝐄 

1 𝑇 − 𝐄 

1 )𝐮 𝐡 ( 𝜉) ,𝜉 − 𝐄 

2 1 
𝜉
𝐮 𝐡 ( 𝜉) 

] 
𝑑𝜉 (5) 

where 

𝐄 0 = ∫𝑆 

𝐁 1 ( 𝑠 ) 
𝐓 𝐃𝐁 1 ( 𝑠 ) |𝐉 ( 𝑠 ) |d 𝑠 

𝐄 1 = ∫𝑆 

𝐁 2 ( 𝑠 ) 
𝐓 𝐃𝐁 1 ( 𝑠 ) |𝐉 ( 𝑠 ) |d 𝑠 

𝐄 2 = ∫𝑆 

𝐁 2 ( 𝑠 ) 
𝐓 𝐃𝐁 2 ( 𝑠 ) |𝐉 ( 𝑠 ) |d 𝑠 (6) 

where the matrices 𝐁 1 and 𝐁 2 are related to the polynomial shape 

functions [9] , J is the Jacobian at the boundary ( 𝜉 = 1). 

Due to the arbitrariness of 𝛿u ( 𝜉), the following conditions must be 

satisfied 

𝐏 = 𝐄 

0 𝐮 ℎ ( 𝜉) ,𝜉 + 𝐄 

1 𝑇 𝐮 ℎ ( 𝜉) (7) 

𝐄 

0 𝜉2 𝐮 𝐡 ( 𝜉) ,𝜉𝜉 + 

(
𝐄 

0 + 𝐄 

1 𝑇 − 𝐄 

1 )𝜉𝐮 𝐡 ( 𝜉) ,𝜉 − 𝐄 

2 𝐮 𝐡 ( 𝜉) = 𝟎 (8) 

By inspection, solutions to the homogeneous set of Euler–Cauchy 

differential equations represented by Eq. (8) must be of the form 

𝐮 𝐡 ( 𝜉) = 𝑐 1 𝜉
− 𝜆1 𝛗 1 + 𝑐 2 𝜉

− 𝜆2 𝛗 2 + ... (9) 

𝝓i are the independent modals of deformation and 𝜆i are the modal 

scaling factors for the ‘radial ’ direction. 𝝓i and 𝜆i are obtained by 

solving the following eigenproblem [9] [ 

𝐄 

−1 
𝟎 𝐄 

𝑇 
1 − 𝐄 

−1 
𝟎 

𝐄 1 𝐄 

−1 
0 𝐄 

𝑇 
1 − 𝐄 2 − 𝐄 1 𝐄 

−1 
0 

] { 

𝛗 

𝐪 

} 

= 𝜆

{ 

𝛗 

𝐪 

} 

(10) 

C = { c 1 , c 2 ...... c i ..} 
T can be determined at 𝜉 = 1 via 

𝐂 = 𝚽−1 𝐮 𝐡 (11) 

where 𝚽= [ 𝝓1 , 𝝓2 ,..., 𝝓n ] 

Fig. 2. A boundary with linear TKBC. 

Furthermore 

𝐏 = 𝐐𝐂 = 𝐐 𝚽−1 𝐮 𝐡 = 𝐊 𝐮 𝐡 (12) 

where P stands for the vector of nodal force concerned with both the 

second and third kind boundary conditions, and Q = [ q 1 , q 2 ,....., q n ], 

q l .refers to the dual variable of 𝝓l . 

The nodal forces concerned with TKBC is described by P S 

3. Description of the third kind boundary condition in static 

problems 

The third kind boundary condition is employed to describe a rela- 

tionship between variables and their derivatives along the boundary. 

For 2-D static problem, it can be written as [ 
𝑙 1 0 𝑙 2 
0 𝑙 1 𝑙 2 

] 
𝛔= p 𝐬 ( 𝐮 ) 𝑥 𝑖 ∈ Γ𝜎 (13) 

where l i is the vector of unit outside normal, 𝝈 stands for the vector of 

stress, and relates the derivatives of u with constitutive relationships, 

u designates the vector of displacement. p s refers to the vector of 

traction, and is a function of u , which may be linear, nonlinear, and 

time dependent, explicitly or implicitly. 

Assume the relationship between p s and u is nonlinear, and is 

defined by 

𝐩 s = A ( 𝐮 ) 𝐮 (14) 

where A ( u ) is a matrix concerned with u. 

Assume the relationship between p s and u is time dependent, and is 

defined by 

𝐩 s ( 𝑡 ) = Λ𝐮 (15) 

where Λ refers to a matrix of temporal operators. 

In the SBFEM, the boundary is discretized into a number of elements 

(shown in Fig. 2 ), the displacement u j = ( u jx ,u jy ) 
T at the j th element is 

approximated by 

𝐮 
𝑗 
= 𝐍 ( 𝑠 ) 𝐮 𝑒 

𝑗 
(16) 

where 𝐮 𝑒 
𝑗 

stands for the vector of nodal displacements of j th element. 

The equivalent nodal forces concerned with TKBC at the j th element 

can be written as 

𝐏 𝐒 𝑒 𝑗 = ∫Γ 𝑣 ( 𝑠 ) 𝐍 

𝑇 ( 𝑠 ) 𝐩 𝐬 𝑗 ( 𝑠 ) 𝑑Γ (17) 

where 

𝑣 = 

{ 

1 , D 

ist ribut ive t ract ion 
𝛿( 𝑠 − 𝑠 𝑗 ) , Individualload (18) 

where p s j ( s ) designates a vector of traction at the j th element, and 𝛿 is 

Dirac function. 
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