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a b s t r a c t 

Meshless local Petrov–Galerkin analysis of functionally graded plates based on a general third-order shear de- 

formation plate theory with a modified couple stress effect is presented. Governing equations of problem are 

a fourth-order partial differential equations system which derived in terms of eleven generalized displacement 

variable, by applying the principle of virtual displacements. The moving least-squares approach is used for ap- 

proximation of unknown variables and the Gauss weight function is employed as test function for obtaining local 

weak form. The Gauss–Legendre quadrature method is utilized for numerical integration of weak equations. Static 

bending results of a simply-supported plate is obtained for various power law index and length scale parameter, 

and is compared to analytical solutions that shows high accuracy in results. 

1. Introduction 

In the mechanical problems, either time-dependent or time- 
independent, it is recommended to reduce three-dimensional governing 
equations of problems to a two-dimensional formulations by a proper 
method. One of the best approaches for reducing three-dimensional elas- 
ticity is representing a dimension of problem through power series and 
multiplying this series to the functions that describe roles of other two 
dimensions. For analyzing plate structures, it is preferred to define the 
direction of thickness by proper order of power series to account for 
the kinematic of deformation and derive constitutive relations. This is 
due to fact that thickness of plates is quite small compared to their in- 
plane dimensions. Types of two-dimensional plate theories consist of 
two categories, displacement-based and stress-based. These two cate- 
gories are similar in expansion of the fields by increasing powers of the 
thickness coordinate, and different in their strain/stress compatibility 
conditions. Displacement-based theories are strain/stress compatible, 
therefore these theories have preferred in literature and in this research 
too. To find the optimal order of power series for expanding thickness 
coordinate in formulation, it should be considered that what degree of 
variation of strains and stresses is recommended to have better results. 
By expanding displacement field up to three order for in-plane displace- 
ments and two order for out-plane displacements in most of cases, the 
transverse shear strains have quadratic variation through the plate thick- 
ness. This approach is the third-order shear deformation theory (TSDT) 
and if all terms in power series remain in expansion, the theory is called 
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the general third-order plate theory (GTPT). In addition to having proper 
variation for the transverse shear strains, TSDT or GTPT do not need to 
any shear correction factor unlike the first-order shear deformation the- 
ory (FSDT). 

In conventional continuum mechanics, the effects of micro- and 
nano-scale interactions are not considered. For analyzing size-dependent 
behavior of micro-scale plate structures, the modified couple stress the- 
ory can be implemented in deriving governing equations. This theory 
has only one length scale parameter for representing microstructural 
effect. This is an advantage of the modified couple stress approach in 
comparison to the classical couple stress theories, due to complexity of 
determining two length scale parameter that each of them related to- 
gether and to size-dependent effect. 

A meshless method is a method used to establish system algebraic 
equations for the whole problem domain without the use of a prede- 
fined mesh for the domain discretization [1] . Meshless methods use a 
set of nodes scattered within the problem domain as well as sets of nodes 
scattered on the boundaries of the domain to represent (not discretize) 
the problem domain and its boundaries. These scattered nodes do not 
form a mesh, so it does not need to any a priori information on the rela- 
tionship between scattered nodes for the interpolation or approximation 
of the unknown functions of field variables [2] . 

There are two basic forms of meshless methods: the global form and 
the local form. The meshless methods based on the global form can 
be applied easily for solving partial differential equations (PDE) and 
integral equations. But these methods are not advantageous for solv- 
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ing all categories of PDEs. To overcome these disadvantages, the mesh- 
less methods based on local approach have been introduced. These ap- 
proaches consist of two classes [3] : 

• Local meshless methods based on the variational weak form 

• Local meshless methods based on the strong form. 

In the first class, it is necessary to use a numerical integration proce- 
dure for solving the local weak equations. This procedure can be mesh- 
less or use background cells for discretizing integration domain. 

In the numerous meshless methods that have applied for solving 
partial differential equations until today, the meshless local Petrov–
Galerkin method (MLPG) is one of the few methods that is truly mesh- 
less, because this approach do not need to meshing either for the inter- 
polation of unknown variables or for the numerical integration of weak 
equations. In other words, no domain or boundary element is required 
for discretizing the domain of problem. The MLPG method is based on 
local weak form that means for every node in the domain, weak form 

equations are satisfied in local sub-domains around nodes. In view of 
the fact that no global integration is involved, the MLPG method is ad- 
dressed as a truly meshless method [4] . This method has been success- 
fully applied for solving a wide range of problems in engineering [5] . 

1.1. Present study 

After the MLPG method introduced by Atluri and Zhu [6] in 1998, 
and discussed in detail by Atluri and his co-authors [7–9] , several re- 
searches is published until today which employed the MLPG approach 
in higher-order plate theories. 

Qian et al. [10] analyzed deformation of a homogenous and isotropic 
thick plate with a higher-order shear and normal deformable plate the- 
ory (HOSNDPT) by using MLPG method that displacements according to 
thickness derived by assuming the Legendre polynomial as basis func- 
tion. They also computed static deformations, and free and forced vi- 
brations of a thick functionally graded plate by applying HOSNDPT and 
MLPG method [11] . Qian and Batra [12,13] studied transient thermoe- 
lastic deformations of a thick FG plate by HOSNDPT and MLPG ap- 
proach. Comparison of the MLPG method and the finite element method 
(FEM) presented in this research. They also designed a FG plate for op- 
timal natural frequencies by employing MLPG method and HOSNDPT 

[14] . Xiao et al. [15] analyzed thick FG plates by using HOSNDPT and 
MLPG approach. They expanded displacement field by the Legendre 
polynomial basis and utilized the Radial Basis Functions (RBFs) for in- 
terpolation of variables. Gilhooley et al. [16] and Xiao et al. [17] at- 
tempted this concept for analyzing thick FG plates and thick composite 
laminates, respectively. 

In addition to MLPG method, several researches investigated solu- 
tions of higher-order plate theories by employing various methods and 
compared results with MLPG solutions. Ferreira et al. [18,19] solved 
TSDT governing equations of FG plates by using the collocation RBF 
method and compared their results with Qian et al. [11] solutions. Nat- 
ural frequencies of a FG plate are achieved by employing the TSDT and 
the collocation RBF approach by Ferreira et al. [20] and compared with 
Qian et al. [11] results. Sheikholeslami and Saidi [21] obtained solutions 
of vibration of a FG plate with HOSNDPT and analytical approach, and 
compared their results with MLPG method [11] . 

Reddy and Kim [22] proposed the GTPT with the modified couple 
stress effect and derived governing equations by employing the princi- 
ple of virtual displacements and the fundamental lemma of variational 
calculus. For first time, analytical solutions for bending, buckling and vi- 
bration of FG plates obtained by Kim and Reddy [23] by using Navier so- 
lution technique. They also computed solutions for bending of FG plates 
with von Kármán nonlinearity by implementing finite element method 
(FEM) with conforming element which has four degree of freedom per 
node [24] . 

In this paper, the GTPT governing equations with modified couple 
stress effect of FG plates are solved by using the MLPG method with the 

moving least-squares (MLS) approach for approximation of unknown 
variables. 

2. Displacements and strains of GTPT 

If in-plane displacement and out-of-plane displacements extend up 
to third power and second power of thickness direction, respectively, 
the displacement field of GTPT can be formulated as [25,26] : 

𝑢 1 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑢 ( 𝑥, 𝑦, 𝑡 ) + 𝑧 𝜃𝑥 ( 𝑥, 𝑦, 𝑡 ) + 𝑧 2 𝜑 𝑥 ( 𝑥, 𝑦, 𝑡 ) + 𝑧 3 𝜓 𝑥 ( 𝑥, 𝑦, 𝑡 ) 

𝑢 2 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑣 ( 𝑥, 𝑦, 𝑡 ) + 𝑧 𝜃𝑦 ( 𝑥, 𝑦, 𝑡 ) + 𝑧 2 𝜑 𝑦 ( 𝑥, 𝑦, 𝑡 ) + 𝑧 3 𝜓 𝑦 ( 𝑥, 𝑦, 𝑡 ) 

𝑢 3 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑤 ( 𝑥, 𝑦, 𝑡 ) + 𝑧 𝜃𝑧 ( 𝑥, 𝑦, 𝑡 ) + 𝑧 2 𝜑 𝑧 ( 𝑥, 𝑦, 𝑡 ) (1) 

where u, v, w , 𝜃x , 𝜃y , 𝜃z , 𝜙x , 𝜙y , 𝜙z , 𝜓 x , and 𝜓 y are unknown generalized 
displacements. In this expansion, normality and straight condition of the 
transverse normal lines under the Kirchhoff assumptions are released be- 
cause of cubic variation of in-plane displacements. Also, inextensibility 
of transverse normal lines is released due to quadratic variation of out- 
of-plane displacements. Here linearized strains are considered and their 
relations to the generalized displacements take the form: 
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3. Governing equations of GTPT 

For deriving governing equations of GTPT based on the modified 
couple stress theory of FG plates, it is needed to represent modified cou- 
ple stress model and constitutive relations of considered FG plate. 

3.1. Modified couple stress model 

Yang et al. [27] proposed a modification of the classical couple stress 
theory (see [28] ), which established that the couple stress tensor is sym- 
metric and the symmetric curvature tensor is the only proper conjugate 
strain criterion that enters in equation of the total strain energy of the 
body. In the modified couple stress theory, strain energy density func- 
tion depends only on the strain and the symmetric part of the curvature 
tensor, therefore only one length scale parameter is involved. This fact 
and inclusion of a symmetric couple stress tensor are two main advan- 
tages of the modified couple stress model over the classical couple stress 
theory. Virtual strain energy 𝛿 using modified couple stress model is 
defined as [29] : 

𝛿 = ∫𝑉 

( 𝛿 𝜺 ∶ 𝝈 + 𝛿 𝝌 ∶ 𝐦 ) 𝑑𝑣 (3) 

where summation on repeated indices is implied: here 𝜎ij are Cartesian 
components of the symmetric part of the stress tensor, 𝜀 ij denotes the 
strain components, m ij are the components of the deviatoric part of the 
symmetric couple stress tensor, and 𝜒 ij donates the symmetric curvature 
tensor components and can be written as [30] : 

𝝌 = 

1 
2 
[
∇ 𝝎 + (∇ 𝝎 ) 𝑇 

]
, 𝝎 = 

1 
2 
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, 𝑖, 𝑗 = 1 , 2 , 3 (5) 
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