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a b s t r a c t 

In this study, a Trefftz collocation method (TCM) is proposed for modeling multiple interacting nano-scale spher- 

ical inhomogeneities considering the interface stress effect. The Papkovich–Neuber (P–N) general solutions are 

used as Trefftz trial functions, which are expressed in terms of spherical harmonics. Non-singular harmonic 

functions, and singular harmonics from multiple source points are included, facilitating the study of multiple 

inclusions. Characteristic lengths are used to scale the Trefftz trial functions, to avoid ill-conditioning of the 

derived system of linear equations. The collocation method is used to enforce boundary conditions. The displace- 

ment continuity and the stress jump across the matrix/inclusion interface, which is described by the generalized 

Young–Laplace equation for solids, are also enforced by the collocation method. Numerical results by the pro- 

posed Trefftz method agree well with the available analytical solutions in the literature. The stress distributions 

of solids containing nano-inhomogeneities show significant size-dependency, in contrast to those for composites 

without considering the interface stress effect. Interactions of multiple nano-inclusions are also studied, which 

can be used as benchmark solutions in future studies. 

1. Introduction 

Composites with nanosized reinforcements, such as nanoparticles 

and nanofibers, etc., have been widely used in various engineering prac- 

tices. Nanocomposites usually demonstrate very different material prop- 

erties as compared to composites with micro-sized reinforcements, part 

of which can be attributed to the interface effects. Thus a good under- 

standing of interface effects in nanocomposites, and establishing effec- 

tive analytical/numerical nano-mechanical models where interface ef- 

fects are considered, will be much beneficial for the design and devel- 

opment of nanocomposites. 

Various models, such as the free sliding model [1] , the linear spring 

model [2] , the dislocation-like model [3] , the interphase model [4] , the 

interface stress model [5–12] etc., are used to simulate the mechanical 

properties of interfaces in composites. Among these models, the inter- 

face stress model has attracted much attention. The concept of interface 

stress in solids was first introduced by Gibbs [10] and have been exten- 

sively investigated since Gurtin and Murdoch [11,12] incorporated in- 

terface stress into continuum mechanics. In the Gurtin–Murdoch model, 

the interface is considered as a negligibly thin layer adhering to bulk 

materials without slipping. The stress jump across the interface is equal 
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to the surface divergence of the interface stress, which is described by 

the generalized Young–Laplace equations. 

Attempts have been made by researchers to find analytical solutions 

for nanocomposites considering the interface stress effect. For problems 

with a single nano-inhomogeneity, Tian [13] obtained the analytical 

solution for the elastic field of a nanoscale 2D circular inhomogene- 

ity in an infinite matrix under arbitrary remote loading and a uniform 

eigenstrain, by using the complex potential technique of Muskhelishvili; 

Duan et al. [7] , He and Li [14] , Lim et al. [15] , Sharma et al. [16] , 

etc. provided analytical expressions of an embedded 3D spherical nano- 

inhomogeneity with the help of the Papkovitch–Neuber displacement 

potentials. Duan et al. [9] , Chen et al. [17] , etc. also extended the Es- 

helby tensor and the Eshelby formalism to nano-inhomogeneities in or- 

der to predict the effective material properties of nanocomposites and 

nanoporous materials, where the interactions among inhomogeneities 

are neglected. 

However, little literature is available on problems of multiple inter- 

acting nano-inhomogeneities considering the Gurtin–Murdoch interface 

model, most of which focuses on 2D problems. For example, Zhang and 

Shen [18] adopted series expansion in bipolar coordinates to investi- 

gate the effects of surface energy on the interaction between holes or 

the edge; Mogilevskaya et al. [19,20] investigated stress distribution of 
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multiple interacting circular nano-inhomogeneities or/and nano-pores. 

A semi-analytical method is used to obtain elastic fields in their work, 

and the results show that the interaction among nano-inhomogeneities 

can be scarcely neglected. Based on Mogilevskaya’s work, Kushch et 

al. [21,22] presented semi-analytical solutions of the problems contain- 

ing multiple spherical inhomogeneities with surface effects described by 

the complete Gurtin–Murdoch model. For 3D problems of multiple in- 

teracting nano-inhomogeneities considering the interface stress effect, 

it is nearly impossible to find analytical solutions due to mathematical 

complexities. 

The difficulty in finding analytical solutions for multiple interacting 

nano-inhomogeneities problems promoted the development of numer- 

ical tools. Chen et al. [17] and Tian and Rajapakse [23] developed a 

kind of surface element to take into account the surface/interface stress 

effect based on the Gurtin–Murdoch theory. Feng et al. [24] developed 

3D FEM with the surface stress effect to investigate the elastic proper- 

ties of silicon nanowires. In addition, a boundary element method (BEM) 

is proposed by Dong and Pan [25] to analyze the stress field in nano- 

inhomogeneities considering surface/interface effects. 

In order to facilitate the study of multiple 3D interacting nano- 

inhomogeneities problems, in this study we develop a 3D Trefftz method 

by employing the Papkovich–Neuber (P–N) solutions that automatically 

satisfy Navier’s equations. The P–N potentials are expressed in terms of 

spherical harmonics, including both non-singular and singular terms. 

The boundary conditions are enforced through the collocation tech- 

nique, where the P–N solutions are matched to the displacement or trac- 

tion boundary conditions point by point. The displacement continuity 

and the stress jump across the matrix/inclusion interface, which is de- 

scribed by the generalized Young–Laplace equation for solids, are also 

enforced by the collocation method. However, the system of equations 

established by the Trefftz method is often severely ill-conditioned, espe- 

cially for 3D Trefftz solutions in terms of spherical harmonics [26,27] . 

In this study, characteristic lengths are used to scale the Trefftz trial 

functions, so the condition number of the equations will be significantly 

reduced and the accuracy of the numerical solution can be guaranteed. 

Finally, several numerical examples are presented to verify the accuracy 

and stability of the present TCM. Numerical results of multiple interact- 

ing nano-inclusions are also given, which can be used as benchmark 

solutions in future studies. 

The rest of this paper is organized as follows: in Section 2 , the gov- 

erning equations for multiple embedded 3D nano-inclusions are briefly 

reviewed. In Section 3 , the Trefftz Collocation Method is given in de- 

tail. In Section 4 , several examples are presented to verify the accuracy 

of the proposed method, and interactions of multiple nano-inclusions 

are studied. In Section 5 , we complete this paper with some concluding 

remarks. 

2. The governing linear elasticity equations for multiple 3D 

nano-inclusions 

As shown in Fig. 1 , solutions of 3D linear elasticity for the matrix 

and inclusions should satisfy the equations of stress equilibrium, strain 

displacement-gradient compatibility, as well as the constitutive relations 

in each domain Ωk : 

∇ ⋅ 𝛔𝑘 + 𝐟 𝑘 = 0 (1) 

𝛆 𝑘 = 

1 
2 
(∇ 𝐮 𝑘 + (∇ 𝐮 𝑘 ) ∗ ) (2) 

𝛔𝑘 = 𝜆𝑘 tr ( 𝛆 𝑘 ) 𝐈 3 + 2 𝜇𝑘 𝛆 𝑘 (3) 

where the superscript k = 0 denotes the matrix material, and k = 1, 2, 

3… denotes multiple inclusions respectively. u 

k , 𝜺 k , 𝝈k are stresses, 

strains, and displacements in matrix/inclusions. f k is the body force 

in matrix/inclusions, which can be neglected for micromechanics 

Fig. 1. An illustration of a matrix containing multiple inclusions. 

of composites. ∇ • and ∇ are the divergence and gradient oper- 

ators. 𝜆𝑘 = 

𝜈𝑘 𝐸 𝑘 

(1−2 𝜈𝑘 )(1+ 𝜈𝑘 ) and 𝜇𝑘 = 

𝐸 𝑘 

2(1+ 𝜈𝑘 ) are Lamé constants for ma- 

trix/inclusions, where E k and 𝜈k are Young’s modulus and Poisson’s ra- 

tio. I 3 is the 3D unit tensor and I 3 = e r ⊗e r + e 𝜃⊗e 𝜃 + e 𝜑 ⊗e 𝜑 in spherical 

coordinates, where e r , e 𝜃 , e 𝜑 are base vectors. tr( 𝜺 k ) denotes the trace 

of the strain tensor. 

The boundary conditions can be written as: 

𝐮 0 = 𝐮̄ at 𝑆 𝑢 (4) 

𝐧 ⋅ 𝛔0 = ̄𝐭 at 𝑆 𝑡 (5) 

where ̄𝐮 and ̄𝐭 are the prescribed boundary displacements and boundary 

tractions at the displacement boundary S u and the traction boundary S t 
of the domain Ω0 

, respectively. 

The interface between the matrix and each inclusion has its own 

Lamé constants 𝜆s and 𝜇s , and its elastic response is governed by: (
𝛔0 − 𝛔𝑘 

)
⋅ 𝐧 = − ∇ 𝑠 ⋅ 𝛕𝑠 at Γ𝑘 (6) 

𝐮 0 = 𝐮 𝑘 = 𝐮 𝑠 at Γ𝑘 (7) 

𝛕𝑠 = 2 𝜇𝑠 𝛆 𝑠 + 𝜆𝑠 tr ( 𝛆 𝑠 ) 𝐈 2 (8) 

𝛆 𝑠 = 

1 
2 
[
𝐷 𝐮 𝑠 + ( 𝐷 𝐮 𝑠 ) ∗ 

]
(9) 

where u 

s , 𝜺 s and 𝝉s are interface displacement, strains and stresses, re- 

spectively. ∇ s = ( I 3 − nn ) • ∇ is the gradient operator defined on the in- 

terface where n is the unit outer-normal vector of the interface. The op- 

erator D is defined so that D u 

s = ( I 3 − nn ) • ( ∇ s u 

s ). I 2 is the unit tangent 

tensor defined on the interface and I 2 = e 𝜃⊗e 𝜃 + e 𝜑 ⊗e 𝜑 in spherical co- 

ordinates. Eq. (6) is the generalized Young–Laplace equation for solids. 

Detailed discussions about the generalized Young–Laplace equation can 

be found in [5–9,11,12,28] . 

For the interface between the matrix and a spherical inclusion as 

shown in Fig. 2 , 𝜺 s and ∇ s • 𝝉
s can be expressed in spherical coordinates 
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