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a b s t r a c t 

The superposition technique is a new BEM alternative for solving sectorially heterogeneous problems in which 

the complete domain is divided in a surrounding homogeneous domain and other complementary sub-domains 

with different constitutive properties. It is an alternative to the classic BEM sub-regions technique. Results of 

preliminary simple problems governed by the Laplace’s equation were successfully solved, using analytical so- 

lutions to performance evaluation. Thus, this paper examines the performance of the superposition technique 

to solve complex problems that present geometric irregularities on the boundary, such as grooves and notches, 

and internal inclusions. Considering the absence of analytical solutions, the Finite Element Method was used to 

generate the reference solutions for a suitable comparison. 

1. Introduction 

The great advances of modern engineering result in increasingly so- 

phisticated numerical models, which require the aid of additional math- 

ematical tools even considering the most powerful discrete techniques as 

Finite Element Method (FEM), Finite Volume Method (FVM) and Bound- 

ary Element Method (BEM). One can mention the use of radial basis 

functions [8] , the wavelet techniques [1,2] and the multiscale modeling 

[10] as examples of these auxiliary approaches. The first two are effec- 

tive mainly in the implementation of adaptive procedures [13,22] and 

the third is suitable to describe the behavior of highly heterogeneous 

materials [9] . 

The radial basis function is still used successfully to model body 

forces, sources, advective and inertial effects within the context of the 

modern BEM techniques as the Dual Reciprocity [20] and the Direct 

Interpolation [15,18] . These techniques are also capable to gradually 

simulate heterogeneous materials. However, certain problems remain 

challenging to the BEM as the agile solution of piecewise or sectorial 

heterogeneous problems. 

Numerical solution of problems with heterogeneous sectors is prefer- 

ably performed by methods that discretize the domain, such as the men- 

tioned FEM and the FVM, since different values of the properties are 

easily introduced inside each sector or sub-domain. Using the Boundary 

Element Method (BEM), computation of sectorial heterogeneities is not 

immediate and during many years the Sub-region Technique (SRT) has 

been the more efficient approach to solve this kind of problem [5] . 
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Proposed improvements in SRT, focusing the solution of hetero- 

geneous problems are not numerous. Some works examines the SRT 

aiming applications in narrow or long profile problems, since the do- 

main can be partitioned and the interaction between source points and 

field points located distant each other are avoided. For example, Dual 

reciprocity method [20] in multi domains subdivides the domain into 

sub-regions preventing computational effort and producing better con- 

vergence and better approximation to physical variables, such as vari- 

able velocities in diffusive–advective problems [23] . Kita and Kamiya 

[12] proposed an improvement to the classic sub-region technique in 

which a global matrix is constructed and better results are achieved; 

however, the BEM equations should be transformed into equations in 

form similar to the stiffness equations of FEM. Using this previous idea 

but examining multi-layer elastic crack problems, Lu and Wu [19] pre- 

sented a parallelization technique to assemble BEM sub-region matrices 

that focuses on a reduction in the computational cost. On the other hand, 

some similar techniques are based on the connection of different regions 

by internal points. Problems with interaction between soil and structure, 

employing the FEM and the BEM together [26] , as well as cases of plate- 

beam-column integrated systems [21,25] , employ the idea of connection 

between different regions using common nodal points. Recently, Wagdy 

and Rashed [27] also proposed an alternative formulation in which the 

idea of the linkage by internal points is improved. 

In a previous work, Brebbia et al. [6] have presented an alternative 

BEM approach for this important class of problems with relative simplic- 

ity, named as Domain Superposition Technique (DST). Using the DST, 
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Fig. 1. Surrounding and sectorial domains. 

Fig. 2. Geometric features and boundary conditions to the first example. 

Table 1 

Number of nodes and elements for the BEM and FEM in the first example. 

Elements Total Boundary Inside In A in B 

FEM 9742 5003 262 4741 51 100 

12,640 6468 294 6174 57 112 

38,594 19,560 524 19,036 101 200 

BEM 74 50 24 11 21 

140 100 40 21 41 

270 200 70 41 81 

the complete problem is modeled as a superposition of one surrounding 

homogeneous domain and a set of complementary internal sub-domains 

with different properties. The energy of each sub-domain is computed 

to the system as a whole by superposition, similar to what is done with 

sources or body actions for solving Poisson’s problems [14,20] . All sec- 

tors are mathematically connected by means of the influence coeffi- 

cients, which in the BEM standard procedure are generated by integra- 

tions performed on the boundary sub-domains, with the source points 

located at each nodal point generated by the discretization, both exter- 

nal and internal as well. 

Initially, relatively simple problems with boundaries and internal 

sectors with rectangular shape were solved and comparisons with sub- 

regions technique were carried out [16,17] . Results achieved with the 

Finite Element Method using finer meshes were used as reference for the 

performance evaluation. The proposed technique was successful, since 

its results were always superior to the results obtained by the sub-region 

technique. 

In continuity to the previous works, more elaborate applications are 

presented here, in which the shape of two-dimensional domains presents 

grooves, notches and other geometric irregularities. Internal inclusions 

that characterize the heterogeneities also have non-regular shapes. Ap- 

plications are done in stationary problems governed by the Laplace 

equation. In the absence of analytical solutions, the performance com- 

parison in each case is carried out considering the results obtained by 

the Finite Element Method [4,11] with a finer mesh. 

2. Domain superposition formulation 

Consider a domain consisting of two regions with different physical 

properties. Within each sub-domain these properties are constant, as 

shown in Fig. 1 . Thus, the complete domain Ω( X ) is composed of the 

sum of the sub-domains Ωe ( X ) and Ωi ( X ), with constitutive properties 

respectively given by K 

e and K 

i : 

Assuming that K 

s = K 

e + K 

i , the following integral equation can be 

written: 

∫
Ω

𝐾( 𝐗 ) 𝑢 ( 𝐗 ) , 𝑖𝑖 𝑢 ∗ ( 𝜉; 𝐗 ) 𝑑Ω( 𝐗 ) 

= 𝐾 

𝑒 ∫
Ω

𝑢 ( 𝑋) , 𝑖𝑖 𝑢 ∗ ( 𝜉; 𝐗 ) 𝑑Ω( 𝐗 ) + 𝐾 

𝑠 ∫
Ω𝑖 

𝑢 𝑖 ( 𝑋) , 𝑖𝑖 𝑢 ∗ ( 𝜉; 𝐗 ) 𝑑 Ω𝑖 ( 𝐗 ) = 0 (1) 

In Eq. (1) , u ∗ ( 𝜉: X ) is the fundamental solution [3] and u i ( X ) means 

the potential in internal points. Rewriting the second term on the right 

side of Eq. (1) in a boundary integral form [16] , highlighting that the 

source points are also located on the domain Ωi ( X ) for clarity, one has: 

𝐾 

𝑠 ∫
Ω𝑖 

𝑢 𝑖 ( 𝑋) , 𝑖𝑖 𝑢 ∗ ( 𝜉; 𝐗 ) 𝑑 Ω𝑖 ( 𝐗 ) 

= 𝐾 

𝑠 [ ∫
Γ𝑖 

𝑞 𝑖 ( 𝐗 ) 𝑢 ∗ ( 𝜉; 𝐗 )d Γi ( 𝐗 ) − ∫
Γ𝑖 

𝑢 𝑖 ( 𝐗 ) 𝑞 ∗ ( 𝜉; 𝐗 )d Γ𝑖 ( 𝐗 ) − 𝑐 ( 𝜉) 𝑢 𝑖 ( 𝜉)] (2) 

In Eq. (2) , q ∗ ( 𝜉: X ) is the normal derivative of the fundamental so- 

lution and q i ( X ) are the normal derivatives of potentials on internal 

boundaries. The value of c ( 𝜉) in Eq. (2) is dependent on the position 

of the source point in relation to the boundary and, if it is located on it, 

its smoothness [16] . 

Physically, the BEM integral equation for Laplace’s problem is re- 

lated to the energy balance in the system, considering the balance 

between the diffusive energy and the flux work. In a homogeneous 

case, these energies are computed respectively by potentials and nor- 

mal derivatives values on the boundary. Considering the DST strategy, 

the sectorial heterogeneities have an intrinsic energy that should be also 

computed in the total energy of system. Thus, the first boundary integral 

on the right-hand side of Eq. (2) represents the flux work q i ( X ), while 

the other terms represent the diffusive energy, which is expressed as a 

function of the internal potentials. 

The aim of the proposed method is consider only the evaluation of 

the amount of diffusive energy present in the internal sub-domains, such 

as is done in Poisson’s problems computing the work due to a source or 

external action [7] . 

Considering the diffusive energy in its totality, which is much easier 

to compute since it is given as a function of the potentials at the in- 

ner points u i ( X ), the two integrals on the right hand side of Eq. (1) are 

rewritten as: 

∫
Γ

𝑢 ( 𝐗 ) 𝑞 ∗ ( 𝜉; 𝐗 ) 𝑑Γ( 𝐗 ) − ∫
Γ

𝑞( 𝐗 ) 𝑢 ∗ ( 𝜉; 𝐗 ) 𝑑Γ( 𝐗 ) + 𝑐(ξ) 𝑢 (ξ) 

= − 

𝐾 

𝑠 

𝐾 

𝑒 
[ 𝑐 ( 𝜉) 𝑢 𝑖 ( 𝜉) + ∫

Γ𝑖 

𝑢 𝑖 ( 𝐗 ) 𝑞 ∗ ( 𝜉; 𝐗 ) 𝑑 Γ𝑖 ( 𝐗 ) ] (3) 

As mentioned, the right hand side of Eq. (3) has the same meaning 

of a domain integral that computes the work due to a source applied to 

a sector for the Poisson’s problems. However, here, this energy is given 

directly by a boundary integral and the internal potentials are unknown. 

It is highlighted that the work of flows in the internal domain is 

not zero; however, it is enough to compute the total diffusive energy 

of the sub-domain in the energy balance [17] . The entire left hand side 

of Eq. (3) is affected by the complete diffusive energy introduced. Thus, 

the system responds as a whole, i.e., the potential and normal derivative 

calculated by the final system of equations take into account the effect 

of all sub-domains and the surrounding domain as well. 

Since the energy of each partition is represented exclusively by 

means of potential values at the internal points, these points must ap- 

pear explicitly in the matrix system, that is, the potential associated with 

them are calculated simultaneously with boundary nodal points. Then, 

the BEM matrix system after the discretization procedure is thus given 

by: ( 

𝐇 𝑐𝑐 𝐇 𝑐𝑖 

𝐇 𝑖𝑐 𝐇 𝑖𝑖 

) ( 

𝐮 𝑐 
𝐮 𝑖 

) 

= 

( 

𝐆 𝑐𝑐 𝟎 𝑐𝑖 
𝐆 𝑖𝑐 𝟎 𝑖𝑖 

) ( 

𝐪 𝑐 
𝐪 𝑖 

) 

(4) 
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