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a b s t r a c t 

Due to its random fibre distribution across the cross-section and their anisotropic and heterogeneous character- 

istic, the prediction of the mechanical behaviour of fibre composite materials is complex. Multi-scale approaches 

have been proposed in the literature to more accurately predict their mechanical properties using computational 

homogenization procedures. 

This work is based on existing multi-scale numerical transition techniques suitable for simulating heteroge- 

neous materials and makes use of two meshless methods —the Radial Point Interpolation Method (RPIM) and 

the Natural Neighbour Radial Point Interpolation Method (NNRPIM) —and the Finite Element Method (FEM). 

Representative volume elements (RVEs) are modelled and discretized using the three numerical methods. Pre- 

scribed microscopic displacements are imposed on different RVEs whose boundaries are periodic and, from the 

obtained stress field, the average stresses are determined. Consequentially, the effective elastic properties of a 

heterogeneous material are obtained for different fibre volume fractions. In the end, the numerical solutions are 

compared with the solutions proposed in the literature and it is proved that the NNRPIM achieve more accurate 

solutions than the RPIM and the FEM. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Presently, fibre composite materials are considerably used in sev- 

eral industries such as aircraft, aerospace or automotive, due to their 

high specific strength and low weight, high corrosion and chemical re- 

sistance and reduced cost. Since they are widely used in primary struc- 

tural components, composite materials have been considerably investi- 

gated in order to predict their failure mechanisms (such as delamination, 

micro-buckling of fibres, cross cracking, etc.). Consequently, it is vital 

to accurately predict their mechanical behaviour, which is a complex 

task due to their anisotropic and heterogeneous characteristic as well as 

their random fibre distribution across the cross-section. [1] . 

When analysing a composite material, two approaches can be iden- 

tified: the macromechanical analysis and the micromechanical anal- 

ysis. In the macromechanical analysis are not considered the micro- 

heterogeneities of the composite material and, therefore, it is treated as 

a homogeneous orthotropic continuum [1] . Despite this approach can 

be reliable in several applications, for more complex situations (such 

as micro-cracking), the micromechanical analysis is the most appropri- 

ate approach since the microscopic phenomena have great influence on 
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the macroscopic behaviour of the material [2] . Thus, a multi-scale ap- 

proach needs to be defined concerning the two scales: macro and mi- 

cro. For simplicity reasons, most microscale models assume a periodic 

arrangement of the fibres in a fibre composite material and it is used 

a representative volume element (RVE), which statistically represents 

the microstructure of the material and contains the information of the 

elastic constants and fibre volume fraction of the composite material. 

The RVE can be considered as an infinitesimal point of the macroscale. 

Thus, using the scale transition theory, it is possible to identify the ho- 

mogenized elastic properties at any infinitesimal point of the composite 

structure and, consequentially, have a more reliable constitutive model. 

This project aims to develop a new computational tool —using MAT- 

LAB®—capable of being applied to a wide range of heterogeneous ma- 

terials whose macro-scale behaviour cannot be interpreted or predicted 

without considering the complex processes that occur in lower dimen- 

sional scales. This research is based on existent multi-scale numerical 

transition techniques [3–8] suitable for simulating heterogeneous mate- 

rials. Thus, this work intends to develop and to implement new numeri- 

cal techniques using advanced discretization methods —meshless meth- 

ods. The novelty of the present research relies on the use of a recently 
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developed meshless method —the Natural Neighbour Radial Point Inter- 

polation Method (NNRPIM) —in the framework of a material homoge- 

nization procedure. In the end, the advantages of using this meshless 

method in micromechanics are explained using comparison studies. 

2. Meshless formulations 

By opposition to the traditional finite element method (FEM), in the 

meshless methods, the concept of mesh or element is inexistent. In these 

methods, the nodes can be arbitrary distributed and the field functions 

are approximated within an ‘influence-domain ’ rather than an element 

[9] . The ‘influence-domain ’ is an area or volume (depending if the stud- 

ied phenomenon is a 2D or a 3D problem) concentric with an interesting 

point or an ‘influence-cell ’ that is constructed in the problem domain re- 

sulting in a node dependent integration background mesh [9] . As con- 

sequence, meshless methods could be divided into two categories, de- 

pending on how the numerical integration is done: the ‘truly ’ meshless 

methods and ‘not truly ’ meshless methods. The truly meshless methods 

are capable to construct background integration meshes based exclu- 

sively on the nodal cloud discretizing the problem domain. The other 

non-truly meshless approaches, use a background integration mesh con- 

structed based on regular or irregular integration lattice following the 

Gauss–Legendre quadrature scheme, eliminating the mesh-free charac- 

teristic of these methods [9] . 

Also in opposition to the FEM (which has a no-overlap rule between 

elements), in meshless methods the nodal connectivity is imposed by 

the overlap of the ‘influence-domains ’ [9] . The high nodal connectivity, 

and the fact that they are not mesh reliant makes meshless methods ad- 

vanced discretization techniques that are solid alternatives to the FEM, 

especially in problems involving large deformations or fracture mechan- 

ics —which frequently are associated, in the FEM, with re-meshing pro- 

cedures showing high computational costs. 

In meshless methods, the shape functions have virtually a higher 

order, allowing a higher continuity and reproducibility [9] . Meshless 

methods can easily handle situations where the geometry is transitory, 

such as the aforementioned cases of large deformations or crack propa- 

gation problems. Within meshless methods, the nodal discretization can 

be easily changed (by adding or removing nodes), simplifying the re- 

finement procedure [10] . In addition, the solutions obtained from the 

meshless methods can be more accurate when compared with a lower 

order FEM [10] . 

Although the existence of meshless methods is dated from 1977, with 

the introduction of the Smooth Particle Hydrodynamics Method (SPH) 

[11] , the first global weak form based meshless method was only pre- 

sented in 1994 with the Element Free Galerkin Method (EFGM) [12] . Be- 

sides the EFGM and the SPH, other very popular meshless methods are: 

the Meshless Local Petrov–Galerkin Method (MLPG) [13] , the Reproduc- 

ing Kernel Particle Method (RKPM) [14] , Point Interpolation Method 

(PIM) [15] , the Point Assembly Method [16] , the Radial Point Inter- 

polation Method (RPIM) [17] or the Natural Neighbour Radial Point 

Interpolation Method (NNRPIM) [9,18] . 

As already mentioned, this work combines a classical homogeniza- 

tion technique for multiscale modelling with two radial point interpo- 

lation meshless methods —the RPIM and the NNRPIM. The RPIM main 

advantage is its potential to be directly included or combined with FEM 

codes. Recall that in order to discretize the problem domain, the FEM 

discretizes the solid volume in a mesh of elements and its respective 

nodes. The RPIM can use the element’s nodal mesh as the discretiza- 

tion nodal mesh and the elements as the background integration cells 

(in which integrations points are distributed). Additionally, the litera- 

ture shows that for the same nodal mesh, the RPIM is capable to obtain 

more accurate solutions when compared with the FEM [9] . Thus, with 

the RPIM it is expected to achieve more accurate homogenized material 

properties, enhancing the precision of the existent multiscale modelling 

techniques and FEM computational frameworks. 

Fig. 1. (a) Regular nodal mesh. (b) Irregular nodal mesh. 

Concerning the NNRPIM, this meshless method has the advantage of 

only requiring a nodal set to fully discretize the problem domain. This 

discretization flexibility opens new technological possibilities in multi- 

scale modelling. For instances, using a micro-CT scan of a composite 

material it would be possible to discretize directly the problem domain 

(to each pixel it would correspond a node, for example). In a micro- 

CT scan, to the pixel’s spatial information is associated a grey-intensity 

value. Therefore, the composite matrix and the fibre will show distinct 

grey-intensity values, allowing to identify and discretize directly sev- 

eral realistic RVEs with a nodal grid (corresponding to the pixels) and 

associating to each node a material type (from the pixel grey-intensity 

value). Additionally, combined with the NNRPIM higher accuracy [9] , it 

is expected to obtain more reliable numerical results, i.e., more reliable 

materials properties. 

2.1. Meshless generic procedure 

Most of the meshless methods, such as the RPIM and the NNRPIM fol- 

low a standard procedure. After the description of the problem domain 

(with the essential and natural boundary conditions), its volume is dis- 

cretized in a nodal mesh (the nodal discretization can be regular —Fig. 

1 (a) —or irregular —Fig. 1 (b) —with the last one having, in general, a 

lower accuracy). However, in some problems where the locations of the 

stress concentration are predictable (crack propagation, holes, clamped 

boundaries, etc.), it is necessary to have a higher nodal density in those 

zones, which will lead to better results. Thus, it is essential to choose a 

correct nodal density of the mesh and the best nodal distribution pos- 

sible without conducting to a significant increase in the computational 

cost, since these discretization parameters influence the method per- 

formance. An unbalanced distribution of the nodes could lead to less 

accurate results [9] . 

After the nodal discretization, a background integration mesh is con- 

structed in the RPIM and in the NNRPIM, which is used to integrate the 

differential equations of the Galerkin weak form (these two meshless 

methods uses the same weak form formulation —Appendix A —as the 

FEM). The integration mesh can be nodal dependent (NNRPIM) or nodal 

independent (RPIM) [9] . A nodal independent integration mesh, in gen- 

eral, uses Gauss points, as in the FEM, fitted to the problem domain ( Fig. 

2 (a)) or not (eliminating the Gauss points that are outside the problem 

domain —Fig. 2 (b)). Another way to integrate the weak form equations 

is using the nodal integration, which can be achieved for instance by 

means of the concept of natural neighbours and the Voronoï diagrams. 

Here, the nodal mesh is used to construct the integration mesh, Fig. 2 (c). 

The NNRPIM uses an improved version of this last mentioned technique. 

After the definition of the integration mesh, the nodal connectivity 

can be imposed. While in the FEM this nodal connectivity is enforced 

with the interaction of the finite elements with the neighbour elements 

(there is a no-overlap rule between elements) and also at the element 

level (where the nodes belonging to the same element interact with 

2 



Download English Version:

https://daneshyari.com/en/article/6924954

Download Persian Version:

https://daneshyari.com/article/6924954

Daneshyari.com

https://daneshyari.com/en/article/6924954
https://daneshyari.com/article/6924954
https://daneshyari.com

