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1. Introduction 

The availability of advanced numerical techniques and faster com- 

puter systems are often exploited for a more scientific approach to the 

problem of pricing financial products. 

A new algorithm, the so-called SABO (Semi-Analytical method for 

pricing of Barrier Options), for the computation of European-style bar- 

rier options in the Black-Scholes and Heston models has been recently 

introduced in [1–3] and anticipated in [4,5] . 

SABO has resulted to be stable and efficient in the special case of 

“barrier options ” as it is based on Boundary Element Method that per- 

fectly suits differential problems defined in unbounded domains whose 

data are assigned on a limited boundary. Computations are performed 

with high accuracy because of the implicit satisfaction of the solution 

far-field behavior and because of the low discretization costs. Moreover, 

the method provides a straight hedging computation. The essential req- 

uisite, that makes it not as general as other numerical methods, is that, 

for its application, we need the knowledge, at least in an approximated 

form, of the transition probability density related to the vanilla option 

problem. 

This paper is aimed at implementing and testing the validity of SABO 

in the evaluation of continuously sampled geometric Asian options with 

barrier [6] . 

Asian options are derivative contracts giving the holder the right 

to buy an asset for its average price over some prescribed period. Ac- 

cordingly, their payoff at maturity depends on the average value of an 

underlying asset over some time interval; therefore we must keep track 
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of more information about the asset price path than simply its present 

position. The average used in the calculation of the option ’s payoff can 

be defined in different ways: it can be an arithmetic average or a geo- 

metric average and the data could be discretely sampled or continuously 

sampled so that every realized asset price over the given period is used. 

Almost all Asian options are traded among practitioners with arithmetic 

average, but this work can be conceived as an intermediate and prepara- 

tory step, because the study of geometric case can give some information 

also about the evaluation of Asian barrier options with arithmetic mean 

(for which it is a lower bound and that can be used as control variate in 

Monte Carlo simulations) and because the mathematical foundations in 

the geometric case are well established and numerically easier to treat. 

In presence of a “barrier ”, Asian option contracts get into existence 

or extinguish when the underlying asset reaches a certain barrier value. 

With this additional condition w.r.t. plain vanilla contracts, the 

buyer get a reasonable protection against inconvenient fluctuations of 

the underlying price and the issuer can attain a better forecasting of the 

terminal position. In general Asian options, and in particular Asian bar- 

rier options, are less expensive than corresponding vanilla options and 

therefore they are more attractive. 

For standard Asian options with geometric mean equipped with 

floating or fixed strike price, closed formula solutions are available [7] , 

but if the contract involves non standard payoffs or arithmetic mean 

or barriers, numerical techniques are unavoidable. The pricing is then 

traditionally based on Monte Carlo methods [7] , binomial/trinomial 

methods [8] or on domain methods, such as Finite Volume Meth- 

ods [9] and Finite Difference methods [10] . Monte Carlo methods are 
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affected by high computational costs and inaccuracy due to their slow 

convergence; domain methods have some troubles concerning stability: 

for path-dependent options, but also in the simpler Black-Scholes Euro- 

pean option framework, there is the problem of degeneracy of the in- 

volved differential operator, pointed out for example in [11] and [12] , 

in fact, for small volatility, the pricing PDE is convection dominated, 

leading to numerical problems in the form of spurious oscillations. For a 

quite complete survey and careful analysis of numerical methods avail- 

able for arithmetic and geometric Asian options without barriers, the 

interested reader is referred to [13] . 

Anyway, barrier options are largely exchanged, as they are good 

products for hedging and investment and they are cheaper than vanilla 

options, but for Asian options we found in literature only the analysis 

of [14] which provides rigorous bounds in the arithmetic mean case. 

In this paper we illustrate how efficient, reliable and quite plain the 

application of SABO to continuously sampled geometric Asian option 

with barriers is. For clarity, the description is carried out in the case of 

call options with an up-and-out barrier and numerical examples concern 

only the case of fixed strike payoff but the method is very general w.r.t. 

these features. Unfortunately, the same can not be said referring to the 

extension to continuously sampled arithmetic Asian option, that, from 

a theoretical point of view, needs only some slight modifications but, 

practically, it collides with some numerical difficulties that will be the 

object of our next investigation. 

The paper is structured as follows: in Section 2 there is an overview 

of the model problem, SABO method is described in Section 3 , while in 

Section 4 there are some hints about performing hedging by SABO. At 

last in Section 5 two numerical examples related to a geometric Asian 

call option with fixed strike payoff and up-and-out barrier are presented 

and discussed. 

2. The model problem 

A geometric Asian option V is an option depending on the evolution 

of the stock price S t (through the duration of the contract, assumed to 

be [0, T ]) and on the geometric average of the stock price over some 

time interval : exp ( A t / t ), having defined 

𝐴 𝑡 ∶= ∫
𝑡 

0 
log ( 𝑆 𝑡 ) 𝑑𝑡. (1) 

If the stochastic process S t is modeled by the usual geometric Brownian 

motion 

𝑑 𝑆 𝑡 = 𝑟𝑆 𝑡 𝑑 𝑡 + 𝜎𝑆 𝑡 𝑑𝑊 𝑡 (2) 

where r denotes the risk free interest rate, 𝜎 the volatility and W t a 

standard Wiener process, then, A t is a lognormal stochastic process too. 

With the classical hedging arguments applied in the Black-Scholes 

framework [12] , it is possibile to conclude that the Asian option value 

V ( S, A, t ) solves the following partial differential equation (PDE): 

𝜕𝑉 

𝜕𝑡 
+ 

𝜎2 

2 
𝑆 

2 𝜕 
2 𝑉 

𝜕𝑆 

2 + 𝑟𝑆 

𝜕𝑉 

𝜕𝑆 

+ log ( 𝑆) 𝜕𝑉 
𝜕𝐴 

− 𝑟𝑉 = 0 

𝑆 ∈ ℝ 

+ , 𝐴 ∈ ℝ , 𝑡 ∈ [0 , 𝑇 ) (3) 

Different final boundary conditions (payoffs) define different types of 

contract, such as: 

floating strike call 𝑉 ( 𝑆, 𝐴, 𝑇 ) = max 
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for 𝑆 ∈ ℝ 

+ , 𝐴 ∈ ℝ and E the strike price. Fixed strike Asian options are 

less expensive than vanilla options and guarantee that the average ex- 

change rate realized during the year is above some level. Floating strike 

options can guarantee that the average price paid for an asset in fre- 

quent trading over a period of time is not greater than the final price. 

However, SABO can treat also other more unusual payoffs. 

Explicit boundary conditions are not available in literature. Some 

boundary conditions are implicitly satisfied by V through its payoff

behavior and they are such to assure existence and uniqueness of the 

Cauchy partial differential problem solution (issue that is discussed in 

Appendix A.1 ). 

Anyway, by stochastic considerations, it is possible to define the ex- 

act solution in an integral form as payoff expected value that can be 

therefore employed also with payoff contracts more general than (4) –

(7) : 

𝑉 ( 𝑆, 𝐴, 𝑡 ) = ∫
+∞

−∞ ∫
+∞

0 
𝑉 ( ̃𝑆 , 𝐴 , 𝑇 ) 𝐺( 𝑆, 𝐴, 𝑡 ; 𝑆 , 𝐴 , 𝑇 ) 𝑑 ̃𝑆 𝑑 ̃𝐴 . (8) 

The function 𝐺( 𝑆, 𝐴, 𝑡 ; 𝑆 , 𝐴 , ̃𝑡 ) is the transition probability density function 

(PDF), also known as Green ’s function or fundamental solution of the par- 

tial differential problem: as a function of ( 𝑆, 𝐴, 𝑡 ) ∈ ℝ 

+ ×ℝ × [0 , 𝑇 ) the 

PDF solves (3) and, as a function of ( ̃𝑆 , 𝐴 , ̃𝑡 ) , it solves the backward Kol- 

mogorov equation adjoint of (3) : for each ( 𝑆, 𝐴, 𝑡 ) ∈ ℝ 
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where 𝛿(·, ·) represents the Dirac distribution 1 . The solution of problem 

(9) must satisfy suitable boundary conditions assuring that the Green 

identity 2 is verified. Look at [15] for the Differential Analysis on the 

matter. 

Denoting by H [ · ] the Heaviside step function, the closed form solu- 

tion of problem (9) is 
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that satisfies 

∫
+∞
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+∞

0 
𝐺 

(
𝑆, 𝐴, 𝑡 ; 𝑆 , 𝐴 , ̃𝑡 

)
𝑑 ̃𝑆 𝑑 ̃𝐴 = exp 

(
− 𝑟 ( ̃𝑡 − 𝑡 ) 

)
. (11) 

The attainment of expression (10) is related to theoretical results in 

Appendix A.1 . 

1 The Dirac ’s delta distribution satisfies the property that ∫ +∞
−∞ 𝛿( 𝑦, 𝑥 ) 𝑓 ( 𝑥 ) 𝑑𝑥 = 

𝑓 ( 𝑦 ) , ∀𝑓 ∈  ∞0 ( ℝ ) . 
2 When considering the PDE [ 𝑢 ] = 0 defined by the partial differential operator 

applied to the unknown solution u then, a function G , satisfies the Green identity if 

⟨[ 𝑢 ] , 𝐺⟩ − ⟨𝑢,  ∗ [ 𝐺] ⟩ = 0 
where  ∗ is the adjoint of operator  and ⟨ · ⟩ is the L 2 scalar product. 
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