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a b s t r a c t 

Power system substations and HV power lines are sources of electric and magnetic fields of industrial frequency. 
Guidelines for permissible electric and magnetic field strengths regarding human exposure and electromagnetic 
compatibility (EMC) are provided by standards. In this paper a novel method for calculating 3D electric field 
near power system facilities is presented. Computation procedure is based on integral equations and boundary 
element methods. The influence of polynomial order of functions used to approximate the unknown linear charge 
densities over the elements is tested for constant, linear and cubic spline functions. Due to a complex geometry 
of substations, a large system of equations needs to be solved to find the unknown charge densities over the 
elements of the model. In order to reduce computational efforts adaptive cross approximation (ACA) is employed. 
The results of computation are in a good agreement with measurements. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In last decades the consumption of electricity is continuously grow- 
ing. Electrical power transmission to consumers is carried out using 
high voltage transmission lines and substations. Transmission lines and 
substations are sources of electromagnetic fields. Voltage levels of the 
power transmission are increasing and there is a high penetration on 
the market of additional artificial sources used in communication and 
networking. 

General public is concerned about possible health risk due to expo- 
sure to electric and magnetic fields. There are several studies indicat- 
ing biological responses from power frequency electromagnetic fields 
[1–3] . The International Commission on Non-Ionizing Radiation Pro- 
tection (ICNIRP) provided guidelines regarding general public exposure 
and occupational exposure [4] . 

Due to the fact that the power frequency is 50 Hz or 60 Hz, time- 
harmonic electric and magnetic fields are considered quasistatic [5] . 
Therefore, electric field is calculated separately. 

Different approaches for calculation of electric field of transmission 
lines and substations exist. Simple geometries can be calculated with 
2D models of the problem [6] . Complex geometries of substations need 
3D modeling. Charge simulation methods (CSM) can be implemented in 
computation of electric field inside substations [7] . Hybrid of CSM and 
boundary element methods (BEM) is presented in [8] to model influence 
of apparatus constructions. Parallelized BEM with cubic spline approx- 
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imation over linear elements and bicubic splines approximation over 
conductive surfaces of apparatus constructions presented in [9] shows 
accurate computation inside substations. 

Significant efforts are conducted in measurements of electromag- 
netic fields inside and in vicinity of outdoor substations. Measurement of 
power frequency electric and magnetic fields inside substations and un- 
der transmission lines is performed in different countries [10] . Measured 
electric and magnetic fields in substations are compared to guidelines 
[11] . Analysis of environmental influence of UHV transmission lines and 
substations are subject of particular interest [12,13] . In [15] computa- 
tion of electric fields inside a substation is done with finite element meth- 

ods (FEM) and compared with measurements. 
In this paper electric field inside substation is calculated with integral 

equations approach. In order to show the influence of different type of 
shape functions of linear charge densities on results in computation, 
solvers for constant, linear, and cubic spline charge densities over the 
element are developed. Solution for unknown constant charge densities 
on elements is developed using BEM and point matching. In order to 
avoid difficulties in choice of points for point matching [16] , Galerkin 
method is implemented in linear and cubic spline solvers [5] . 

Since BEM results in fully populated matrix of the system, a compres- 
sion technique adaptive cross approximation (ACA) can be implemented 
[17–27] . Efficiency of such an approach in computational electromag- 
netics is presented for a Laplace equation example [22] and scattering 
problems [23,27] . 
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The contribution of this paper is manifold: 

• application of different self-developed BEM solvers to calculate elec- 
tric field, 

• application of ACA method to solve the problem more efficiently, 
• benchmarking ACA accelerated BEM with measurements. 

2. Calculation method 

In order to effectively compute electric field in a substation, only the 
conductors at known potentials are modeled. The ground is assumed 
to be on zero potential. The influence of the ground on electric field 
in the substation is taken into account by the method of images. Since 
the diameter of HV lines is significantly smaller than the distance to the 
point where the electric field is computed, thin-wire linear elements in 
a substation model can be used [9] . The phasor of the electric potential 
𝜑̇ ( ⃗𝑟 ) at a point ⃗𝑟 due to the unknown phasor of linear charge density 𝜆̇( ⃗𝑟 ′) 
at ⃗𝑟 ′ on a thin-wire element is determined by equation [5] : 

𝜑̇ ( ⃗𝑟 ) = ∫
𝑙 ′

𝜆̇( ⃗𝑟 ′) 𝑑𝑙 ′

4 𝜋||𝑟 − ⃗𝑟 ′|| . (1) 

The unknown function of linear charge density phasor 𝜆̇( ⃗𝑟 ′) is com- 
puted by boundary element methods. The thin-wires are divided into 
segments Δl i ′ . The linear charge density phasor on the i th element can 
be expressed for coefficient K ik of the basis function s k as [9] : 

𝜆̇𝑖 = 

𝑁 𝐵 ∑
𝑘 =1 

𝐾 𝑖𝑘 𝑠 𝑘 . (2) 

The solvers for computation of electric field are developed for a con- 
stant charge density function over the i th segment ( N B = 1), a linear 
charge density function over the i th segment ( N B = 2)and a cubic spline 
charge density function over the i th segment ( N B = 4). 

2.1. Approximation of the unknown charge density functions with constant 

charges on thin-wire elements (N B = 1) 

For a constant linear charge on the i th straight thin-wire element of 
the length l , a closed form well-known solution for potential exists [5] , 
and can be described in cylindrical coordinate system as: 

𝜑̇ 𝑖 ( 𝑟, 𝑧 ) = 
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System of equations is then formed from Eq. (3) for i = 1, 2, …, N seg , 
and solved for unknown 𝜆̇on segments: 

𝐂 ⋅ 𝛌̇ = 𝛗̇ , (4) 

where C is full matrix of coefficients of potentials, derived by the point- 
matching method [5] at the points on a half of each segment. 

Radial component of the electric field 𝐸⃗ 𝑖,𝑟 , and axial component 𝐸⃗ 𝑖,𝑧 

of the i th thin-wire in a point ⃗𝑟 are calculated from closed form solution 
[5] : 
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Fig. 1. Linear shape functions. 
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Fig. 2. Cubic spline shape functions. 

2.2. Approximation of the unknown charge density functions with linear 

charges density functions on thin-wire elements (N B = 2) 

Linear charge density functions ( Fig. 1 ) on a segment are developed 
on the dimensionless parameter t, (0 ≥ t ≥ 1): 

𝑠 𝑘 = 

𝑁 𝐵 ∑
𝑗=1 

𝑎 𝑘𝑗 𝑡 
𝑗−1 , 𝑘 = 1 , … , 𝑁 𝐵 (7) 

Coefficients a kj can be expressed in a matrix: 

𝐀 = 

[ 
0 1 
1 −1 

] 
. (8) 

Potential in a point ⃗𝑟 can be calculated combining Eqs. (1) and (2) for 
linear shape functions to equation: 

𝜑̇ ( ⃗𝑟 ) = 

𝑁 𝑠𝑒𝑔 ∑
𝑖 =1 

𝑁 𝐵 ∑
𝑘 =1 

𝐾 𝑖𝑘 ∫
Δ𝑙 ′ 𝑖 

𝑠 𝑘 ( ⃗𝑟 ′) 𝑑𝑙 ′

4 𝜋||𝑟 − ⃗𝑟 ′|| . (9) 

In order to avoid difficulties in choice of collocation points [16] , 
the coefficients K ik , representing the linear charge densities values at the 
end points of segments, are determined from known potentials on the 
conductors using Galerkin methods [5,14] . 

Electric field in a point ⃗𝑟 is then calculated using: 

̇⃗
𝐸( ⃗𝑟 ) = 

𝑁 𝑠𝑒𝑔 ∑
𝑖 =1 

𝑁 𝐵 ∑
𝑘 =1 

𝐾 𝑖𝑘 ∫
Δ𝑙 ′ 𝑖 

𝑠 𝑘 ( ⃗𝑟 ′)( ⃗𝑟 − ⃗𝑟 ′) 𝑑𝑙 ′

4 𝜋||𝑟 − ⃗𝑟 ′||3 . (10) 

2.3. Approximation of the unknown charge density functions with cubic 

spline charges density functions on thin-wire elements (N B = 4) 

Cubic spline charge density functions ( Fig. 2 .) are determined with 
Eq. (4) , taking into account that the number of basis functions is N B = 4 
and the matrix A is [9] : 

𝐀 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 
1 0 −3 2 
0 1 −2 1 
0 0 −3 2 
0 0 −1 1 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 
. (11) 
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