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a b s t r a c t 

To advance Time-Domain Boundary Element Methods (TD-BEMs), a generalized direct time-integration solution 

method for three-dimensional elastodynamics is presented in this paper. On the basis of a general decomposition 

of time-dependent point-load Green’s functions into a singular and regular part, a regularized boundary integral 

equation for the time domain is formulated and implemented via a variable-weight multi-step collocation scheme 

that allows for different orders of time projection for the boundary displacements and tractions. The benefits and 

possibilities of improved performance by suitable collocation weights and the solution projection choices are 

illustrated via two benchmark finite-domain and infinite-domain problems. 

1. Introduction 

Boundary element method (BEM) is a powerful numerical method 

for elastodynamics, as an independent candidate or a component in a 

hybrid procedure [8] especially in unbounded domain problems. While 

the approach is commonly implemented in the frequency domain, a 

sound time-domain boundary element formulation (TD-BEM) is of equal 

fundamental importance to both theoretical and computational devel- 

opments. Apart from its clear analytical appeal in being able to han- 

dle directly in the time domain fast transient and shock-like dynamic 

conditions for which a frequency-domain approach will have to face 

the challenge of determining the system response at very high frequen- 

cies, an effective TD-BEM is essential to allow the method to be cou- 

pled with a wide variety of mesh-based or meshless methods to realize 

the best modeling of complex physical problems. To date, a number of 

TD-BEM formulations have been proposed for 2-D (e.g., [1,6,7,20] ) and 

3-D problems (e.g., [4,7,11,14,24,25] ) . While various advances have 

been found in recent years, there are still basic theoretical and numer- 

ical issues that warrant further attention. For example, one common 

feature among many time-domain BEM formulations is the presence of 

Cauchy principal values (CPV) of integrals and the jump term as a re- 

sult of the strong singularity of the point-load traction Green’s functions. 

Although there are schemes for their computation using special quadra- 

ture weights, the method of finite part integration [7,15] or rigid-body 

motion that combines both evaluations [4] , they are generally sensi- 
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tive numerically or limited to specific load and geometric configura- 

tions. More fundamentally, numerical instability and accuracy issues in 

the execution of the time integration have remained the critical chal- 

lenge to be fully resolved as they tend to be problem- and mesh-specific 

in time-domain boundary element treatments [8,9,23] . Aimed to mit- 

igate the issue, a number of numerical schemes have been proposed. 

Examples are the averaged collocation method [19] , the 𝜀 method [23] , 

the linear- 𝜃 method [2] , the time-weighting method [10,30,32] , and 

the Galerkin method [31] . While there are alternative avenues to time- 

domain solution via, for example, the frequency domain through FFT 

algorithms or the Laplace transform domain with the method of con- 

volution quadrature (CQ) [26,27] , the direct time-integration boundary 

element approach has the fundamental appeal of conceptual simplicity 

and ease in implementation. To advance this class of methods, a TD- 

BEM scheme that can be customized parametrically to achieve a higher 

level of stability and accuracy control should be valuable. 

In this paper, a generalized weighted-collocation boundary element 

method for three-dimensional elastodynamics is presented. On the ba- 

sis of an analytical decomposition of any time-dependent point-load 

Green’s functions into a singular and regular part [20,28] , a regular- 

ized boundary integral equation for time-domain analysis is formulated 

and implemented via a variable-weight multi-step collocation scheme 

with higher-order temporal projections of the displacement and trac- 

tion variations. The numerical performance of the formulation using 

different parametric combinations is tested and compared against more 
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Fig. 1. Elastodynamic boundary value problem. 

basic treatments. The possibility of improved performance by an optimal 

choice of the collocation weights and the order of variable projection is 

explored via some benchmark finite-domain and infinite-domain prob- 

lems. 

2. Theoretical framework for elastodynamic boundary element 

method and its regularization 

With reference to a Cartesian frame { O ; 𝜉1 , 𝜉2 , 𝜉3 } for a three- 

dimensional solid in motion whose displacement, Cauchy stress tensor, 

body force, elasticity tensor and mass density are denoted by u ( 𝝃, t ), 𝝉( 𝝃, 

t ), f ( 𝝃, t ), C and 𝜌, respectively, in an open regular region Ω bounded by 

Γ with a quiescent past, it can be shown by Graffi’s dynamic reciprocal 

theorem [29] that the displacement field at a point x in Ω admits the 

representation of 

𝐷( 𝐱 ) 
[
𝑢 𝑘 ( 𝐱 , 𝑡 ) ∗ 𝑔( 𝑡 ) 

]
= ∫Γ

[
𝑡 𝑖 ( 𝛏, 𝑡 ) ∗ �̂� 𝑘 𝑖 ( 𝛏, 𝐱, 𝑡 ) 

]
d Γ𝛏

− ∫Γ
[
�̂� 𝑘 
𝑖 
( 𝛏, 𝐱, 𝑡 ; 𝐧 ) ∗ 𝑢 𝑖 ( 𝛏, 𝑡 ) 

]
d Γ𝛏

+ ∫Ω
[
𝑓 𝑖 ( 𝛏, 𝑡 ) ∗ �̂� 𝑘 𝑖 ( 𝛏, 𝐱, 𝑡 ) 

]
d Ω𝛏, 

𝐷 ( 𝐱 ) = 

{ 

1 , 𝐱 ∈ Ω
0 , 𝐱 ∉ Ω

} 

(1) 

in indicial notation for the interior domain problem depicted in 

Fig. 1 a, with n being the unit outer normal on the surface Γ and 

[ a ( t ) ∗ b ( t )] the Riemann convolution of the 2 functions a ( t ) and b ( t ). With 

𝛿i k denoting the Kronecker delta and 𝛿( x − 𝝃) the three-dimensional 

Dirac delta function, �̂� 𝑘 
𝑖 
( 𝛏, 𝐱, 𝑡 ) , �̂� 𝑘 

𝑖 
( 𝛏, 𝐱, 𝑡 ; 𝐧 ) and Γ̂𝑘 

𝑖𝑗 
( 𝛏, 𝐱, 𝑡 ) are the dis- 

placement, traction and stress Green’s functions under a concentrated 

body force field 𝑓 𝑘 
𝑖 
( 𝑖 = 1 , 2 , 3 ) 

𝑓 𝑘 
𝑖 
( 𝛏, 𝑡 ) = 𝛿𝑖𝑘 𝛿( 𝐱 − 𝛏) 𝑔 ( 𝑡 ) , 𝑡 > 0 , 𝑘 = 1 , 2 , 3 , (2) 

which corresponds to a time-dependent unit point-load in the k th direc- 

tion acting at a point x with a magnitude that is described by the arbi- 

trary function g ( t ). For an unbounded domain Ω that is exterior to the 

boundary surface Γ, the elastodynamic integral representation is iden- 

tical to Eq. (1) , provided that the unit normal on Γ is directed opposite 

that for the interior case and the solution satisfies the generalized radi- 

ation or regularity condition of 

lim 

𝜌→∞∫Γ𝜌
([
𝑡 𝑖 ( 𝛏, 𝑡 ) ∗ �̂� 𝑘 𝑖 ( 𝛏, 𝑡 ; 𝐱|𝑔 ) ]− 

[
�̂� 𝑘 
𝑖 
( 𝛏, 𝑡 ; 𝐧 , 𝐱|𝑔 ) ∗ 𝑢 𝑖 ( 𝛏, 𝑡 ) ])d Γ𝛏 = 0 , ∀𝐱 ∈ Ω, 

(3) 

where Γ𝜌 is the spherical outer surface with its radius 𝜌→∞ (see 

Fig. 1 b). Taking into account the different orders of singularity of the 

Fig. 2. Formal domain of definition for the jump term c ik . 

displacement and traction Green’s functions �̂� 𝑘 
𝑖 

and �̂� 𝑘 
𝑖 

, the limiting 

form of Eq. (1) as x →y ∈ Γ can be stated explicitly as 

∫
𝑡 

0 
𝑐 𝑖𝑘 ( 𝐲, 𝑡 − 𝜏) 𝑢 𝑖 ( 𝐲, 𝜏) 𝑑𝜏 + ∫

𝑡 

0 
–∫ Γ
�̂� 𝑘 
𝑖 
( 𝛏, 𝐲, 𝑡 − 𝜏; 𝐧 ) 𝑢 𝑖 ( 𝛏; 𝜏) 𝑑 Γ𝜉𝑑𝜏

= ∫
𝑡 

0 ∫Γ �̂� 
𝑘 
𝑖 
( 𝛏, 𝐲, 𝑡 − 𝜏) 𝑡 𝑖 ( 𝛏, 𝜏) 𝑑 Γ𝜉𝑑𝜏

+ ∫
𝑡 

0 ∫Ω �̂� 
𝑘 
𝑖 
( 𝛏, 𝐲, 𝑡 − 𝜏) 𝑓 𝑖 ( 𝛏, 𝑡 )d Ω𝛏𝑑𝜏, ∀𝐲 ∈ Γ (4) 

where –∫ Γ stands for the Cauchy principal value of the surface integral 

and 

𝑐 𝑖𝑘 ( 𝐲, 𝑡 ) = 𝛿𝑖𝑘 𝑔( 𝑡 ) + lim 

𝜀 →0 ∫ ⌢ 

Γ 𝜀 
�̂� 𝑘 
𝑖 
( 𝛏, 𝐲, 𝑡, 𝐧 ) 𝑑 Γ𝜉 , 𝐲 ∈ Γ, (5) 

with 
⌢ 

Γ𝛆 denoting the small hemispherical surface with a dimension de- 

fined by 𝜀 and centered at y (see Fig. 2 ) so that �̂� 𝑘 
𝑖 
( 𝛏, 𝐲, 𝑡, 𝐧 ) is theoreti- 

cally non-singular in the limit process. 

Despite its classical appeal and adoption, the boundary integral for- 

mulation by Eqs. (4) and ( 5 ) is not without some common objections. 

For one, the second integral of Eq. (4) is in terms of its Cauchy princi- 

pal value whose numerical evaluation is often sensitive as discussed in 

the Introductin. For non-homogeneous media and non-smooth bound- 

ary geometries, a direct evaluation of the jump term c ik in Eq. (5) is also 

non-trivial generally. To avoid these obtuse computational challenges 

in a time-domain BEM, an alternative boundary integral equation for- 

mat which can bypass these issues is proved to be feasible as in [ 22 ] 

and [ 28 ]. For this purpose, it is useful to note that dynamic point-load 

stress Green’s function corresponding to Eq. (2) can be decomposed, as 
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