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a b s t r a c t 

Radial basis functions play an increasingly prominent role in modern approximation. They are widely used in 

scattered data fitting, numerical solution of partial differential equations, machine learning and others. Although 

radial basis functions have excellent approximation properties, they often produce highly ill-conditioned discrete 

algebraic system and lead to a high computational cost. The paper introduces local multilevel scattered data 

interpolation method, which employ nested scattered data sets and scaled compactly supported radial basis func- 

tions with varying support radii. We will provide convergence theory for Sobolev target functions. And several 

numerical experiments will be provided to conform the efficiency of new method. 
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1. Introduction 

In this work, we introduce and analyze the local multilevel scattered 

data interpolation method. As an important tool in modern approxi- 

mation, radial basis functions allow the easy construction of approxi- 

mation spaces in arbitrary dimensions with arbitrary smoothness. Error 

estimates for scattered data interpolation via radial basis functions have 

been proved not only in native spaces, but also in Sobolev spaces. We can 

see the theory in early papers [11,18] and recent papers [12,13] . Par- 

ticularly in [14] , Schaback compared all linear PDE solvers and found 

that error-optimal methods are radial basis functions methods. Although 

globally supported radial basis functions have excellent approximation 

properties, they often produce dense discrete system which tends to be 

poor conditioning. Compactly supported radial basis functions leads to a 

very well-conditioned sparse system, but at the cost of a poor approxima- 

tion accuracy. This is a “trade-off” principle. That is to say, small support 

leads to a well-conditioned system but also poor accuracy, while large 

support yields excellent accuracy at the price of ill-conditioned system. 

The goal of this paper is to design a local multilevel scattered data in- 

terpolation method which is likely to maintain approximation accuracy 

and with a low computational cost. To avoid writing constants repeat- 

edly, we shall use notations ≲ , ≳ and ≅, as in the well-known paper 

[19] . With some constants c and C , the short notation x ≲ y means x ≤ Cy ; 

and x ≅y means cx ≤ y ≤ Cx . 

2. Local multilevel interpolation method 

As we saw in introduction, there is a “trade-off” principle for in- 

terpolation with compactly supported radial basis functions. In order to 
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combine the advantages of globally supported radial basis functions and 

compactly supported radial basis functions, a multilevel stationary in- 

terpolation algorithm was implemented first in [8] , and then studied by 

a number of other researchers [3–5,7,9,10,16] . In multilevel algorithm, 

the target function first is interpolated on the coarsest level by one of 

the compactly supported radial basis functions with a larger support. 

Then the residual can be formed, and be interpolated on the next finer 

level by the same compactly supported radial basis function but with 

a smaller support. This process can be repeated and be stopped on the 

finest level. And the final approximation is the sum of all of interpolants. 

The weakness of the multilevel interpolation algorithm is that a 

global interpolation problem must be solved on each level, which will 

waste a lot of computational time. To avoid solving a series of global 

problems, we will use the local multilevel interpolation method. 

Let Ω ⊆ ℝ 

𝑑 be a bounded domain. Let 𝑋 = { x 1 , … , x 𝑁 

} be a finite 

point set in Ω. We associate this point set with fill distance 

ℎ 𝑋, Ω ∶= sup 
x ∈Ω

min 
x 𝑗 ∈𝑋 

‖x − x 𝑗 ‖2 , (2.1) 

and separation distance 

𝑞 𝑋 ∶= min 
𝑗≠𝑘 

‖x 𝑘 − x 𝑗 ‖2 . (2.2) 

We assume that the point set is quasi-uniform, which means h X , Ω≅ q X . 

To construct a local method, we need a successive refinement 

point sets 𝑋 1 , 𝑋 2 , …, which have fill distances ℎ 𝑗 = ℎ 𝑋 𝑗 , Ω. Of course 

X 1 ⊂X 2 ⊂ · · · , if h j are monotonically decreasing. Let 𝑋 

∗ 
𝑗 ⊆ 𝑋 𝑗 be newly 

added point set in X j , and have fill distances ℎ ∗ 𝑗 ≥ ℎ 𝑗 . Then we have 

𝑋 1 = 𝑋 

∗ 
1 and 𝑋 𝑗 = 𝑋 𝑗−1 

⋃
𝑋 

∗ 
𝑗 for 𝑗 = 2 , …. 
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Fig. 1. Nested scattered data sets and corresponding supports. 

Table 1 

Number of points on each level and corresponding ℎ ∗ 
𝑗 
. 

Level j 1 2 3 4 5 6 

#( 𝑋 𝑗 ) 9 34 115 404 1493 5718 

#( 𝑋 

∗ 
𝑗 
) 9 25 81 289 1089 4225 

ℎ ∗ 
𝑗 
≈ 1 

2 
1 
4 

1 
8 

1 
16 

1 
32 

1 
64 

Table 2 

Numerical result for 𝑏 = 1 . 

j RMS-error Max-error %nonzero Time (s) 

1 2.4843E − 01 8.4283E − 01 55.56 0.03 

2 1.5539E − 01 7.9190E − 01 15.20 0.05 

3 1.0283E − 01 7.8592E − 01 4.89 0.06 

4 8.2009E − 02 7.8592E − 01 1.10 0.15 

5 6.6870E − 02 7.6557E − 01 0.32 0.84 

6 4.5191E − 02 7.1481E − 01 0.08 8.98 

Table 3 

Numerical result for 𝑏 = 0 . 5 . 

j RMS-error Max-error %nonzero Time (s) 

1 1.3259E − 01 4.6615E − 01 97.53 0.02 

2 4.8543E − 02 3.8572E − 01 52.32 0.04 

3 2.8578E − 02 3.5321E − 01 15.71 0.08 

4 2.2981E − 02 3.4422E − 01 4.45 0.18 

5 1.5945E − 02 3.1050E − 01 1.19 0.91 

6 9.8463E − 03 1.9932E − 01 0.31 9.10 

We pick a kernel Φ𝑗 ∶ Ω × Ω → ℝ for each 𝑋 

∗ 
𝑗 . In many applications, 

the kernel is given by one of the scaled version of a translation invari- 

ant functions. Let Φ ∶ ℝ 

𝑑 → ℝ be one of the compactly supported radial 

basis functions. We can define the kernel as 

Φ𝑗 ( ⋅, y ) = 𝜀 𝑑 𝑗 Φ( 𝜀 𝑗 ( ⋅ − y )) , y ∈ 𝑋 

∗ 
𝑗 . (2.3) 

Clearly, Φj is a scaled radial basis function whose support is a ball with 

radius 1 
𝜀 𝑗 

and center y (See Fig. 1 ). 

Then we can build local approximation spaces 

𝑊 𝑗 = span {Φ𝑗 ( ⋅, y ) ∶ y ∈ 𝑋 

∗ 
𝑗 } . (2.4) 

Let V j be approximation spaces on data sets X j . Then we have 𝑉 1 = 𝑊 1 , 

𝑉 𝑗 = 𝑉 𝑗−1 
⨁

𝑊 𝑗 for 𝑗 = 2 , …, and V 1 ⊂V 2 ⊂ · · · . 

We need to associate W j with some kinds of norms. The associated 

reproducing kernel Hilbert space (or native space)  𝐾 ( ℝ 

𝑑 ) of kernel K 

Table 4 

Numerical result for 𝑏 = 0 . 1 . 

j RMS-error Max-error %nonzero Time (s) 

1 9.7623E − 02 3.1969E − 01 100.00 0.03 

2 4.6522E − 02 2.0613E − 01 100.00 0.05 

3 7.8327E − 03 3.9937E − 02 99.94 0.07 

4 1.4573E − 03 2.3140E − 02 65.17 0.20 

5 3.7999E − 04 7.2034E − 03 23.09 1.00 

6 1.0553E − 04 1.5967E − 03 6.67 9.93 
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Fig. 2. RMS-error for C 2 local interpolation with varying level and b . 

consists of all functions 𝑔 ∈ 𝐿 

2 ( ℝ 

𝑑 ) satisfying 

‖𝑔‖2 𝐾 = ∫ℝ 𝑑 
|𝑔 ( 𝝎 ) |2 
𝐾 ( 𝝎 ) 

𝑑 𝝎 < ∞ (2.5) 

with 

𝑔 ( 𝝎 ) = (2 𝜋) − 
𝑑 
2 ∫ℝ 𝑑 𝑔( x ) 𝑒 

− 𝑖 x 𝑇 𝝎 𝑑 x . (2.6) 

Suppose further that kernel K satisfies 

𝐾 ( 𝝎 ) ≅ (1 + ‖𝝎 ‖2 2 ) − 𝜏 , 𝜏 > 

𝑑 

2 
and 𝝎 ∈ ℝ 

𝑑 (2.7) 

then  𝐾 ( ℝ 

𝑑 ) is a Sobolev space 𝐻 

𝜏 ( ℝ 

𝑑 ) and it has an equivalent Sobolev 

type norm 

‖𝑔‖𝐻 

𝜏 ( ℝ 𝑑 ) 
2 = ∫ℝ 𝑑 |𝑔 ( 𝝎 ) |2 (1 + ‖𝝎 ‖2 2 ) 𝜏𝑑 𝝎 . (2.8) 

Let 𝐾 = Φ𝑗 , then the norm of the space W j will be denoted by 

‖𝑔‖2 Φ𝑗 
= ∫ℝ 𝑑 

|𝑔 ( 𝝎 ) |2 
Φ̂𝑗 ( 𝝎 ) 

𝑑 𝝎 , ∀𝑔 ∈ 𝑊 𝑗 . (2.9) 

It is well-known that the Mat ́e rn functions and Wendland ’s compactly 

supported functions can satisfy (2.7) (or their Fourier transforms decay 

only algebraically). We can refer to monographs [2,6,15] for the details. 

Using the techniques of Fourier transform and the definition of norm 

((2.8) and (2.9)) , we have following norm equivalence theorem. 

Theorem 2.1. Let Φ be a kernel satisfying (2.7) and Φj be defined by (2.3) . 

If 𝑔 ∈ 𝐻 

𝜏 ( ℝ 

𝑑 ) and every scaling parameter 𝜀 j ≥ 1, then  Φ𝑗 
( ℝ 

𝑑 ) = 𝐻 

𝜏 ( ℝ 

𝑑 ) 
and 

‖𝑔 ‖Φ𝑗 
≲ ‖𝑔 ‖𝐻 

𝜏 ( ℝ 𝑑 ) ≲ 𝜀 𝜏𝑗 ‖𝑔 ‖Φ𝑗 
. 

Proof. See [16] , a similar norm equivalence theorem with inverse of 𝜀 j 
as scaling parameter. □
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