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a b s t r a c t 

This paper presents a novel numerical procedure based on the meshless local natural neighbor interpolation 

(MLNNI) method for modeling two-dimensional magneto–electro-elastic solids. As a special case of the general- 

ized meshless local Petrov–Galerkin (MLPG) method, the MLNNI method satisfies the weak form equations locally 

in polygonal sub-domains which surround each node. The natural neighbor interpolation is used to approximate 

the unknown fields in numerical simulations and thus only a set of scattered nodes are utilized to represent the 

problem domain. The usage of three-node triangular FEM shape functions as test functions results in the reduction 

of the order of integrands in domain integrals. As the constructed shape functions possess a point interpolation 

property, the essential boundary conditions can be imposed directly without the need of introducing special tech- 

niques. Numerical examples for magneto–electro-elastic problems are presented to demonstrate the solutions of 

the present MLNNI method with other available solutions. 

1. Introduction 

Magneto–electro-elastic (MEE) composite materials have a wide 

range of advanced engineering application, because of the mixed charac- 

teristics of the piezoelectric, piezomagnetic and magnetoelectric effects 

[1–3] . Such magnetoelectromechanical coupling makes these materials 

widely used to construct novel multifunctional devices such as trans- 

ducers, sensors, and actuators and therefore it is of great importance 

to simulate magneto–electro-elastic problems in order to determine the 

field variables. However, it is more difficult to deal with magneto–

electro-elastic problems than elasticity ones because of multi-fields cou- 

pling involved. Consequently, in recent years, various numerical meth- 

ods have been developed for modeling the magneto–electro-elastic prob- 

lems ranging from the finite element method (FEM) [4] , the boundary 

element method (BEM) [2,3] , the boundary contour method (BCM) [5] , 

the scaled boundary finite element method (SBFEM) [6,7] , and so on. 

As an alternative to traditional finite element formulations, mesh- 

less methods [8–12] are recently becoming popular and they have been 

developed rapidly as a class of computational techniques for solving 

partial differential equations. In the meshless methods, only a set of 

scattered nodes are required to discretize the problem domain and 

boundaries and therefore not only the burdensome work of mesh gen- 

eration can be avoided, but also irregular complex geometries can be 

described more accurately. Up to now, a wide variety of meshless meth- 

ods have been developed for analyzing various engineering problems, 

such as the element free Galerkin (EFG) method [8] , the meshless local 

∗ Corresponding author. 

E-mail address: chenshenshen@tsinghua.org.cn (S.S. Chen). 

Petrov–Galerkin method (MLPG) [9,10] , the reproducing kernel parti- 

cle method (RKPM) [13,14] , and the meshfree radial point interpola- 

tion method [15] . Among these, the MLPG method, which provides the 

flexibility in choosing the trial and test functions, is one of the most suc- 

cessful meshless methods. Compared to the global weak form method, 

the MLPG method does not require extra quadrature background cells 

and is therefore referred to as a truly meshless method. As a result, 

the MLPG method has been successfully utilized in a wide range of 

computational problems [16–21] . However, a major shortcoming of the 

MLPG method is that the computational cost required for evaluating 

the non-interpolative moving least squares (MLS) approximation is rel- 

atively high and special treatments are required to impose the essen- 

tial boundary conditions. To overcome these shortcomings, Cai and zhu 

[22] proposed a new technique, the meshless local natural neighbor 

interpolation (MLNNI) method, which is formulated to unite the ad- 

vantages of the MLPG method and the natural neighbor interpolation 

(NNI) [23] with unique properties of its own. The primary advantage of 

the NNI is that its shape functions possess the Kronecker delta func- 

tion property and the essential boundary conditions can be imposed 

in straight forward way as in FEM. Due to these attractive merits, the 

MLNNI method is applied with great success to the study of transient 

heat conduction problems [24] , dynamics problems [25,26] , piezoelec- 

tric structures [27] , and functionally graded viscoelastic materials [28] . 

In this paper, the MLNNI method has been developed to solve 

magneto–electro-elastic problems for the first time. Only a set of scat- 

tered nodes are introduced to represent the analyzed domain and there 
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is no need to connect the nodes to form closed polygons. Local weak 

forms over polygonal sub-domains are derived by using the weighted 

residual method from the coupled governing equations of magneto–

electro-elastic problems. The NNI [23] is utilized to approximate spa- 

tial variation of displacements, electric and magnetic potentials and the 

three-node triangular FEM shape functions are used test functions of the 

weighted residual method. No special treatment is needed to impose the 

essential boundary conditions and the orders of integrands of domain in- 

tegrals can be reduced. In the end, numerical examples are solved and 

comparisons with other available solutions to demonstrate the validity 

and accuracy of the present technique. 

2. Problem definition 

If body forces, free electric charges and free magnetic currents are ab- 

sent, the equilibrium equations of a two-dimensional magneto–electro- 

elastic problem in a domain Ω bounded by a surface Γ with an outward 

unit normal vector with the components n i can be expressed in the fol- 

lowing form 

𝜎𝑖𝑗,𝑗 = 0 (1) 

𝐷 𝑖,𝑖 = 0 (2) 

𝐵 𝑖,𝑖 = 0 (3) 

where 𝜎ij are the stress components, D i represent the electric displace- 

ments and B i denote the magnetic inductions. Note that a comma after 

a quantity denotes the partial derivative of the quantity. 

The strain 𝜀 ij , the electric field E i and the magnetic field H i can be 

written in the form 

𝜀 𝑖𝑗 = 

1 
2 
( 𝑢 𝑖,𝑗 + 𝑢 𝑗,𝑖 ) (4) 

𝐸 𝑖 = − Φ,𝑖 (5) 

𝐻 𝑖 = − 𝜓 ,𝑖 (6) 

If direction 3 is taken to be the poling direction and the plane strain 

state is assumed, the constitutive equations for transversely isotropic 

magneto–electro-elastic material are given by 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜎𝑥 
𝜎𝑧 
𝜏𝑥𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ 
= 

⎡ ⎢ ⎢ ⎣ 
𝑐 11 𝑐 13 0 
𝑐 13 𝑐 33 0 
0 0 𝑐 44 

⎤ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥 
𝜀 𝑧 
𝛾𝑥𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ 
− 

⎡ ⎢ ⎢ ⎣ 
0 𝑒 31 
0 𝑒 33 
𝑒 15 0 

⎤ ⎥ ⎥ ⎦ 
{ 

𝐸 𝑥 

𝐸 𝑧 

} 

− 

⎡ ⎢ ⎢ ⎣ 
0 𝑑 31 
0 𝑑 33 
𝑑 15 0 

⎤ ⎥ ⎥ ⎦ 
{ 

𝐻 𝑥 

𝐻 𝑧 

} 

= 𝑪 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥 
𝜀 𝑧 
𝛾𝑥𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ 
− 𝑳 

{ 

𝐸 𝑥 

𝐸 𝑧 

} 

− 𝑫 

{ 

𝐻 𝑥 

𝐻 𝑧 

} 

(7) 

{ 

𝐷 𝑥 

𝐷 𝑧 

} 

= 

[ 
0 0 𝑒 15 
𝑒 31 𝑒 33 0 

] ⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥 
𝜀 𝑧 
𝛾𝑥𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ 
+ 

[ 
ℎ 11 0 
0 ℎ 33 

] { 

𝐸 𝑥 

𝐸 𝑧 

} 

+ 

[ 
𝑔 11 0 
0 𝑔 33 

] { 

𝐻 𝑥 

𝐻 𝑧 

} 

= 𝑮 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥 
𝜀 𝑧 
𝛾𝑥𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ 
+ 𝑯 

{ 

𝐸 𝑥 

𝐸 𝑧 

} 

+ 𝑨 

{ 

𝐻 𝑥 

𝐻 𝑧 

} 

(8) 

{ 

𝐵 𝑥 

𝐵 𝑧 

} 

= 

[ 
0 0 𝑑 15 
𝑑 31 𝑑 33 0 

] ⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥 
𝜀 𝑧 
𝛾𝑥𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ 
+ 

[ 
𝑔 11 0 
0 𝑔 33 

] { 

𝐸 𝑥 

𝐸 𝑧 

} 

+ 

[ 
𝜇11 0 
0 𝜇33 

] { 

𝐻 𝑥 

𝐻 𝑧 

} 

= 𝑹 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 𝑥 
𝜀 𝑧 
𝛾𝑥𝑧 

⎫ ⎪ ⎬ ⎪ ⎭ 
+ 𝑨 

{ 

𝐸 𝑥 

𝐸 𝑧 

} 

+ 𝑴 

{ 

𝐻 𝑥 

𝐻 𝑧 

} 

(9) 

where c ij , e ij , d ij , h ij , g ij and 𝜇ij represent the elastic, piezoelectric, piezo- 

magnetic, dielectric, electromagnetic and magnetic constants, respec- 

tively. For the plane stress state the constitutive relations can also be 

obtained from Eqs. (7) –( 9 ) by replacing c ij , e ij , d ij , h ij , g ij and 𝜇ij with 𝑐 𝑖𝑗 , 

𝑒 𝑖𝑗 , 𝑑 𝑖𝑗 , ℎ̄ 𝑖𝑗 , �̄� 𝑖𝑗 and �̄�𝑖𝑗 , which are listed as follows 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ 

𝑐 11 = ( 𝑐 2 11 − 𝑐 2 12 )∕ 𝑐 11 , ̄𝑐 13 = ( 𝑐 11 − 𝑐 12 ) 𝑐 13 ∕ 𝑐 11 , ̄𝑐 33 = ( 𝑐 11 𝑐 33 − 𝑐 2 13 )∕ 𝑐 11 , 
𝑐 44 = 𝑐 44 
𝑒 31 = ( 𝑐 11 − 𝑐 12 ) 𝑒 31 ∕ 𝑐 11 , ̄𝑒 33 = ( 𝑐 11 𝑒 33 − 𝑐 13 𝑒 31 )∕ 𝑐 11 , ̄𝑒 15 = 𝑒 15 
𝑑 31 = ( 𝑐 11 − 𝑐 12 ) 𝑑 31 ∕ 𝑐 11 , 𝑑 33 = ( 𝑐 11 𝑑 33 − 𝑐 13 𝑑 31 )∕ 𝑐 11 , 𝑑 15 = 𝑑 15 
ℎ̄ 11 = ℎ 11 , ̄ℎ 33 = ( 𝑐 11 ℎ 33 + 𝑒 2 31 )∕ 𝑐 11 
�̄� 11 = 𝑔 11 , ̄𝑔 33 = ( 𝑐 11 𝑔 33 + 𝑒 31 𝑑 31 )∕ 𝑐 11 
�̄�11 = 𝜇11 , �̄�33 = ( 𝑐 11 𝜇33 + 𝑑 2 31 )∕ 𝑐 11 

(10) 

The natural mechanical, electrical and magnetic boundary condi- 

tions on Γt , Γq and Γb are 

𝜎𝑖𝑗 𝑛 𝑗 = ̄𝑡 𝑖 , on Γ𝑡 (11a) 

𝐷 𝑖 𝑛 𝑖 = − ̄𝜔 , on Γ𝑞 (11b) 

𝐵 𝑖 𝑛 𝑖 = − ̄𝜂, on Γ𝑏 (11c) 

while the essential mechanical, electrical and magnetic boundary con- 

ditions on Γu , Γp and Γa are 

𝑢 𝑖 = �̄� 𝑖 , on Γ𝑢 (12a) 

Φ = Φ̄, on Γ𝑝 (12b) 

𝜓 = �̄� , on Γ𝑎 (12c) 

where 𝑡 𝑖 , �̄� , �̄�, �̄� 𝑖 , Φ̄ and �̄� denote the prescribed values of sur- 

face traction, surface charge, surface magnetic induction, displace- 

ment, electric potential and magnetic potential, respectively. Note that 

Γu + Γt = Γp + Γq = Γa + Γb = Γ. 

3. MLNNI formulation for magneto–electro-elastic problems 

3.1. Brief of the natural neighbor interpolation 

In order to construct shape function, the well-known NNI 

[23] scheme is utilized in the present study, which is based on the 

Voronoi diagram and Delaunay tessellation of the domain. Consider a 

set of distinct nodes 𝑵 = { 𝒙 1 , 𝒙 2 , ⋯ , 𝒙 𝑀 

} in two-dimensional 

Euclidean space R 

2 . The first-order Voronoi diagram of the set N is a 

unique subdivision of the plane into a series of regions T I , which is de- 

fined as follows [29] 

𝑇 𝐼 = { 𝒙 ∈ 𝑅 

2 ∶ 𝑑( 𝒙 , 𝒙 𝐼 ) < 𝑑( 𝒙 , 𝒙 𝐽 )∀𝐽 ≠ 𝐼} (13) 

where d ( x , x I ) is the distance between x and x I . The dual of the Voronoi 

diagram is the Delaunay tessellation. 

For purpose of quantifying the neighbours for an inserted point x , it 

is necessary to previously introduce the concept of second-order Voronoi 

cell T IJ , which can be defined in mathematical terms as 

𝑇 𝐼𝐽 = 

{
𝒙 ∈ 𝑅 

2 ∶ 𝑑( 𝒙 , 𝒙 𝐼 ) < 𝑑( 𝒙 , 𝒙 𝐽 ) < 𝑑( 𝒙 , 𝒙 𝐾 )∀𝐽 ≠ 𝐼 ≠ 𝐾 

}
(14) 

The Sibson shape function of x with respect to node I is formulated 

in two dimensions as the ratio of area A I ( x ) for T xI and A ( x ) for T x 

𝜙𝐼 ( 𝒙 ) = 𝐴 𝐼 ( 𝒙 )∕ 𝐴 ( 𝒙 ) (15) 
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