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In this study, the spectral meshless radial point interpolation (SMRPI) technique is applied to the Cauchy prob- 

lem of two-dimensional fractional diffusion equation. We obtain the unknown data on the inner boundary when 

overspecified boundary data is imposed on the outer boundary. The SMRPI is based on a combination of mesh- 

free methods and spectral collocation techniques. The point interpolation method with the help of radial basis 

functions is used to construct shape functions which act as basis functions in the frame of SMRPI. Here, similar 

to other meshless methods, localization in SMRPI can reduce the ill-posedness of the Cauchy problem. However, 

it does not require to use regularization algorithms and therefore reduces computational time. Two numerical 

examples, are tested to show that the SMRPI can overcome the ill-posedness of the Cauchy problem and has 

acceptable accuracy. Also, by adding some large perturbations, the proposed method is still stable. 

1. Introduction 

Fractional diffusion equations arise in various scientific and engi- 
neering problems related to anomalous diffusion (superdiffusion, non- 
Gaussian diffusion, subdiffusion) [1–4] , which might be inconsistent 
with the classical Brownian motion model. It usually appears in math- 
ematics, physics, chemistry, biological systems and so on. Moreover, 
time-fractional diffusion equation is often used to describe viscoelastic 
and viscoplastic flow [5,6] . The inverse problems of fractional diffusion 
equation have been considered by many researchers in many theoret- 
ical papers. For a rather incomplete list, the uniqueness of an inverse 
problem for a one-dimensional fractional diffusion equation was given 
in [7] . Cheng and Fu [8] gave an iteration regularization method for a 
time-fractional inverse diffusion problem. Zheng and Wei [9,10] inves- 
tigated a time-fractional inverse diffusion problem by using a spectral 
regularization method and a modified equation technique. Liu and Feng 
[11] gave a modified kernel method for a time-fractional inverse diffu- 
sion problem. Shakeri and Dehghan [12] applied the homotopy pertur- 
bation method for solving an inverse parabolic equation and computing 
an unknown time-dependent parameter. Xiong et al. [13] investigated 
a fractional inverse heat conduction problem defined in a semi-infinite 
two-dimensional domain and applied the Fourier transform for stability 
analysis and error estimate. 

Yan and Yang [14] investigated two-dimensional time-fractional in- 
verse diffusion problems by an efficient Kansa-type method of funda- 
mental solutions (MFS-K) for solving the Cauchy problem associated 
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with the inhomogeneous elliptic-type equation. Cauchy problems are 
typical inverse problems, since no information about the solution are 
available on a part of the boundary. Due to the missing boundary con- 
ditions, the solution of these problems does not depend continuously on 
the data and so are known as ill-posed problems in the sense that small 
perturbations in the input data may result in enormous deviations in 
the solution. The present paper considers the following time-fractional 
diffusion equation: 

𝑐 𝑢 𝛼
𝑡 
( x , 𝑡 ) = Δ𝑢 ( x , 𝑡 ) + 𝑓 ( x , 𝑡 ) , x ∈ Ω ⊂ ℝ 

2 , 𝑡 ∈ (0 , 𝑇 ] , (1) 

𝑢 ( x , 0) = 𝑢 0 ( x ) , x ∈ Ω, (2) 

𝑢 ( x , 𝑡 ) = 𝑔( x , 𝑡 ) , x ∈ Γ𝑜𝑢𝑡 , 𝑡 > 0 , (3) 

𝜕𝑢 ( x , 𝑡 ) 
𝜕𝑛 

= ℎ ( x , 𝑡 ) , x ∈ Γ𝑜𝑢𝑡 , 𝑡 > 0 , (4) 

where Ω is a doubly connected domain, 𝜕Ω = Γ𝑜𝑢𝑡 ∪ Γ𝑖𝑛 is the whole 
boundary for problem, Γin and Γout are inner and outer boundaries, re- 
spectively. Here 𝑐 𝑢 𝛼

𝑡 
( x , 𝑡 ) , 0 < 𝛼 < 1, denotes the Caputo fractional deriva- 

tive of order 𝛼 with respect to t and it is defined by 

𝑐 𝑢 𝛼
𝑡 
( x , 𝑡 ) = 

1 
Γ(1 − 𝛼) ∫

𝑡 

0 

𝜕𝑢 ( x , 𝜂) 
𝜕𝜂

𝑑𝜂

( 𝑡 − 𝜂) 𝛼
, 0 < 𝛼 < 1 , (5) 

where Γ( · ) is the Gamma function. Also, Δ denotes the Laplacian oper- 
ator, n is outward unit normal on Γout , moreover u 0 , f, g and h are the 
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given functions. Eqs. (3) and (4) are the Dirichlet boundary condition 
and the Neumann boundary condition, respectively which are imposed 
on Γout , and no boundary condition is given on Γin . Although this inverse 
problem may have a unique solution, it is well-known that this solution 
is unstable against small perturbations on the accessible boundary Γout , 
see Hadamard [15] . Therefore, Cauchy problems are ill-posed inverse 
problems. In practical applications, the given Cauchy data usually con- 
tains certain noise. Instead of the exact data g and h , we will imposing 
a random noise on the Cauchy data as following equations: 

𝑔 𝜖( x , 𝑡 ) = 𝑔( x , 𝑡 ) 
( 

1 + 𝜎𝜖

) 

, x ∈ Γ𝑜𝑢𝑡 , 𝑡 > 0 , (6) 

ℎ 𝜖( x , 𝑡 ) = ℎ ( x , 𝑡 ) 
( 

1 + 𝜎𝜖

) 

, x ∈ Γ𝑜𝑢𝑡 , 𝑡 > 0 , (7) 

where 𝜖 is a random number whose range is [−1 , 1] . Also, 𝜎 is a user- 
defined parameter to denote the percentage of the noise. 

The main shortcoming of mesh-based methods such as the finite ele- 
ment method (FEM) [16] , the finite volume method (FVM) [17] and the 
boundary element method (BEM) [18] is that these numerical methods 
rely on meshes or elements. In the two last decades, in order to overcome 
the mentioned difficulties some techniques so-called meshless methods 
have been proposed. A brief review of the meshless method has been 
studied in [19] . 

In spite of great benefits in using the meshless weak form methods, 
there are some limitations. For example, the complicated nature of the 
non-polynomial shape functions may be computationally expensive to 
implement in a numerical integration scheme. On the other hand, some 
methods such as those that are based on moving least squares (MLS) 
and RBFs, need to determine a shape parameter which plays the im- 
portant role in the accuracy of the methods. Furthermore, the resul- 
tant linear systems might be ill-conditioned and to overcome this defect, 
some regularization methods are needed. In the meshless method based 
on strong form, such as Kansa ’s method, this RBF collocation approach 
is inherently meshless, easy-to-program, and mathematically very sim- 
ple to learn, but its fundamental flaw is un-stability because of the use 
of the global strong form. To overcome these shortages, we propose a 
new spectral meshless radial point interpolation (SMRPI) method which 
is based on meshless radial point interpolation and spectral colloca- 
tion techniques [20–22] . In the SMRPI method, the point interpolation 
method by the help of radial basis functions is proposed to construct 
shape functions which have Kronecker delta function property and are 
used as basis functions in the frame of the SMRPI. Based on the spec- 
tral methods, evaluation of high-order derivatives of given differential 
equation is easy by constructing and using operational matrices. The 
SMRPI method does not require any kind of integration locally over 
small quadrature domains nor regularization techniques. Therefore, the 
computational cost of the SMRPI method is less expensive. The aim of 
this paper is the development of spectral meshless radial point interpo- 
lation to obtain the solution of the Cauchy problem of two-dimensional 
fractional diffusion equation in some doubly connected domains. When 
overspecified boundary data are imposed on the outer boundary, we 
obtain the unknown data on the inner boundary. 

The outline of this paper is as follows. In Section 2 , we introduce the 
spectral meshless radial point interpolation scheme briefly so that the 
high order operational matrices are obtained. A time discrete scheme for 
implementation of the SMRPI is given in Section 3 . In Section 4 , we re- 
port the numerical experiments of solving Eq. (1) for two test problems. 
Finally a conclusion is given in Section 5 . 

2. Proposed method 

This section has been adapted from Ref. [23] . Consider a continuous 
function 𝑢 ( x ) defined in a domain Ω, which is represented by a set of 
field nodes. The 𝑢 ( x ) at a point of interest x is approximated in the form 

of 

𝑢 ( x ) = 

𝑛 ∑
𝑖 =1 

𝑅 𝑖 ( x ) 𝑎 𝑖 + 

𝑚 ∑
𝑗=1 

𝑝 𝑗 ( x ) 𝑏 𝑗 = R 

𝑡𝑟 ( x ) a + P 

𝑡𝑟 ( x ) b , (8) 

where 𝑅 𝑖 ( x ) is a radial basis function (RBF), n is the number of RBFs, 
𝑝 𝑗 ( x ) is monomial in the space coordinate x , and m is the number of 
polynomial basis functions. Coefficients a i and b j are unknown which 
should be determined. In the current work, we use the multi-quadrics 
(MQ) as radial basis functions in Eq. (8) which is defined as follows: √
𝑟 2 + 𝑐 2 , (9) 

where the term c is known as the ‘shape parameter ’. In order to deter- 
mine a i and b j in Eq. (8) , a support domain is formed for the point of 
interest at x , and n field nodes are included in the support domain (see 
Fig. 1 ) (support domain is usually a disk with radius r s ). Coefficients a i 
and b j in Eq. (8) can be determined by enforcing Eq. (8) to be satisfied 
at these n nodes surrounding the point of interest x . Therefore, by the 
idea of interpolation Eq. (8) is converted to the following form: 

𝑢 ( x ) = 𝚽𝑡𝑟 ( x ) U 𝑠 = 

𝑛 ∑
𝑖 =1 

𝜙𝑖 ( x ) 𝑢 𝑖 , (10) 

where 𝜙𝑖 ( x ) ’s are called the RPIM shape functions which have the Kro- 
necker delta function property, that is 

𝜙𝑖 ( x 𝑗 ) = 

{ 

1 , 𝑖 = 𝑗, 𝑗 = 1 , 2 , … , 𝑛, 

0 , 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1 , 2 , … , 𝑛. 
(11) 

This is because the RPIM shape functions are created to pass thor- 
ough nodal values. Moreover, the shape functions are the partitions of 
unity, i.e. 

𝑛 ∑
𝑖 =1 

𝜙𝑖 ( x ) = 1 , (12) 

for more details about RPIM shape functions and the way they are con- 
structed, the readers are referred to see [24] . Now, we construct oper- 
ational matrices which are essential tools of present approach. Opera- 
tional matrices make the technique more appropriate to handle partial 
differential equations with high derivatives. Suppose that the number 
of total nodes covering the domain of the problem i.e. Ω = ( Ω ∪ 𝜕Ω) is 
N . On the other hand, we know that n is depend on point of interest x 
(so, after that we call it 𝑛 x ) in Eq. (10) which is the number of nodes 
included in support domain Ωx corresponding to the point of interest x 
(for example Ωx can be a disk centered at x with radius r s , see Fig. 1 ). 
Therefore, we have 𝑛 x ≤ 𝑁 and Eq. (10) can be modified as 

𝑢 ( x ) = 𝚽𝑡𝑟 ( x ) U 𝑠 = 

𝑁 ∑
𝑗=1 

𝜙𝑗 ( x ) 𝑢 𝑗 . (13) 

In fact, corresponding to node x there is a shape function 𝜙𝑗 ( x ) , 𝑗 = 

1 , 2 , 3 , … , 𝑁, we define Ω𝑐 
x = 

{
x 𝑗 ∶ x 𝑗 ∉ Ωx 

}
then it is clear from the 

previous section that 

∀x 𝑗 ∈ Ω𝑐 
x ∶ 𝜙𝑗 ( x ) = 0 . (14) 

The derivatives of 𝑢 ( x ) are easily obtained as 

𝜕𝑢 ( x ) 
𝜕𝑥 

= 

𝑁 ∑
𝑗=1 

𝜕𝜙𝑗 ( x ) 
𝜕𝑥 

𝑢 𝑗 , 
𝜕𝑢 ( x ) 
𝜕𝑦 

= 

𝑁 ∑
𝑗=1 

𝜕𝜙𝑗 ( x ) 
𝜕𝑦 

𝑢 𝑗 , (15) 

and also high derivatives of 𝑢 ( x ) are easily given as 

𝜕 𝑠 𝑢 ( x ) 
𝜕𝑥 𝑠 

= 

𝑁 ∑
𝑗=1 

𝜕 𝑠 𝜙𝑗 ( x ) 
𝜕𝑥 𝑠 

𝑢 𝑗 , 
𝜕 𝑠 𝑢 ( x ) 
𝜕𝑦 𝑠 

= 

𝑁 ∑
𝑗=1 

𝜕 𝑠 𝜙𝑗 ( x ) 
𝜕𝑦 𝑠 

𝑢 𝑗 , (16) 

where 𝜕 𝑠 ( ⋅) 
𝜕𝑥 𝑠 

and 𝜕 𝑠 ( ⋅) 
𝜕𝑦 𝑠 

are s ’th derivative with respect to x and y , re- 

spectively. Denoting 𝑢 ( 𝑠 ) 𝑥 ( ⋅) = 

𝜕 𝑠 ( ⋅) 
𝜕𝑥 𝑠 

and 𝑢 ( 𝑠 ) 𝑦 ( ⋅) = 

𝜕 𝑠 ( ⋅) 
𝜕𝑦 𝑠 

, and setting x = x 𝑖 in 
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