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In this paper, a new singular element is presented to evaluate stress intensity factors of V-shaped notches subjected 

to mixed-mode load. The proposed element takes into account special variation of displacements in the vicinity 

of the notch tip. The singularity at notch tip is variable unlike the crack problem where the displacements around 

the crack tip have variation of square root of r . In the proposed method, special basis functions considering the 

singularity order at notch tip are incorporated into the shape functions of the new element, and the singularity 

order is determined by the included angle of the notch. With the new element, more accurate displacement and 

stress fields in the neighborhood of the notch tip can be obtained, thus the stress intensity factors are computed 

more accurately. Accurate stress intensity factors are important for the V-notched structures to develop a fracture 

criterion. Numerical examples have demonstrated the accuracy and efficiency of the proposed method. 

1. Introduction 

Studying of V-notched structures is of great importance, since they 

are stress raisers. The stress at the tip of a sharp notch is singular ac- 

cording to the linear elastic theory. Thus the stresses evaluated at sin- 

gular point have little reference value and the classical strength theories 

are not suitable for V-notch problems. The fracture criterion for the V- 

notched structures should be based on the stress intensity factors. 

The boundary element method (BEM) is an attractive method for 

the V-notch problems due to accurate results for stresses and mesh re- 

duction [1–15] . Rzasnicki et al. [16] applied BEM to analysis of single- 

edge notch subjected to pure bending. Portela et al. [17] developed 

a boundary element singularity subtraction technique to analyze the 

sharp notched plates. Niu et al. [18] proposed an interpolating matrix 

method coupled with conventional BEM to model singular stress field in 

V-notched structures. Cheng et al. [19] analyzed the singularity order 

of V-notch with angularly inhomogeneous elastic properties. In these 

methods, complicated mathematical deductions are used and they are 

not convenient to implement in ordinary BEM programs. 

In this paper, a new singular element with special shape functions is 

proposed for evaluating the stress intensity factors of V-shaped notches. 

The element with usual shape functions cannot accurately model the 

displacement field around the notch tip unless extremely fine meshes 

are used. The singular element for crack problems is also not suitable 

for analyzing the structure with V-shaped notches. This is because the 

displacements in the vicinity of the notch tip are of the variation of r 𝜆. r 
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is the distance to the notch tip and 𝜆 is the eigenvalue (0.5 ≤ 𝜆≤ 1). The 

crack tip singular element [20–23] can only model the variation of r 0.5 . 

The stress singularity is mainly determined by the first eigenvalue 𝜆1 , 

especially for large included angle of the notch. In the proposed method, 

the variation of r 𝜆1 is considered in the new singular element. 𝜆1 varies 

with respect to the notch angle. The special shape functions are derived 

according to the notch angle. With the new singular element, more ac- 

curate displacement and stress distributions in the neighborhood of the 

notch tip can be obtained, thus the stress intensity factor is evaluated 

more accurately. Accurate stress intensity factor is important for the V- 

notched structures to develop a fracture criterion. 

This paper is organized as follows. In Section 2 , the BEM is briefly de- 

scribed. Section 3 introduces the new singular element in detail. Numer- 

ical examples are given in Section 4 . The paper ends with conclusions 

in Section 5 . 

2. Boundary element method 

2.1. Boundary integral equation 

The boundary integral equation for 2D elastostatic problem in an 

isotropic, homogeneous medium is as follows: 

𝑐 𝑖𝑗 ( 𝑃 ) 𝑢 𝑗 ( 𝑃 ) = ∫Γ 𝑢 
∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑡 𝑗 ( 𝑄 ) 𝑑Γ( 𝑄 ) − ∫Γ 𝑡 

∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑢 𝑗 ( 𝑄 ) 𝑑Γ( 𝑄 ) (1) 

where P and Q are the source and the field points, respectively. c ij ( P ) is a 

coefficient matrix depending on the smoothness of the boundary Γ at the 
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source point P. u j and t j represent the displacement and traction com- 

ponents, respectively. 𝑢 ∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) and 𝑡 ∗ 

𝑖𝑗 
( 𝑃 , 𝑄 ) are the well-known Kelvin 

fundamental solutions and given by 

𝑢 ∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) = 

1 
8 𝜋𝐺(1 − 𝑣 ) 

[
(3 − 4 𝑣 ) 𝛿𝑖𝑗 ln 

1 
𝑟 
+ 𝑟 ,𝑖 𝑟 ,𝑗 

]
(2) 

𝑡 ∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) = − 

1 
4 𝜋(1 − 𝑣 ) 𝑟 

{ 

𝜕𝑟 

𝜕𝑛 

[
(1 − 2 𝑣 ) 𝛿𝑖𝑗 + 2 𝑟 ,𝑖 𝑟 ,𝑗 

]
− (1 − 2 𝑣 )( 𝑟 ,𝑖 𝑛 𝑗 − 𝑟 ,𝑗 𝑛 𝑖 ) 

} 

(3) 

where G and v are the shear modulus and the Poisson’s ratio, respec- 

tively. r is the distance between the source and the field point. n i and n j 
are the components of the normal n . 

2.2. Solution of the boundary integral equation 

Eq. (1) is discretized by n e elements. The discretization form of the 

boundary integral equation is given by 

𝑐 𝑖𝑗 ( 𝑃 ) 𝑢 𝑗 ( 𝑃 ) = 

𝑛 𝑒 ∑
𝑒 =1 

{ 

𝑛 𝛼∑
𝛼=1 

𝑡 𝛼
𝑗 ∫Γ𝑒 𝑢 

∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑁 𝛼( 𝑄 ) 𝑑Γ( 𝑄 ) 

} 

− 

𝑛 𝑒 ∑
𝑒 =1 

{ 

𝑛 𝛼∑
𝛼=1 

𝑢 𝛼
𝑗 ∫Γ𝑒 𝑡 

∗ 
𝑖𝑗 
( 𝑃 , 𝑄 ) 𝑁 𝛼( 𝑄 ) 𝑑Γ( 𝑄 ) 

} 

(4) 

where n 𝛼 is the number of the element nodes. N 𝛼 is the shape function 

of the 𝛼th node of the element. 

The system of linear algebraic equations can be expressed in matrix 

form as 

𝐇𝐮 = 𝐆𝐭 (5) 

where vectors u and t consist of all nodal displacements and tractions 

on the boundary. Matrix H contains integrals involving 𝑡 ∗ 
𝑖𝑗 

, and matrix 

G contains integrals involving 𝑢 ∗ 
𝑖𝑗 

. Rearranging Eq. (5) according to the 

boundary conditions, the final system of linear equations can be ob- 

tained. 

𝐀𝐱 = 𝐟 (6) 

where A is the coefficient matrix. x is the vector containing the boundary 

unknowns at the source nodes. f is the known vector on the right-hand 

side. 

3. New singular element 

3.1. Analysis of the singularity for the V-shaped notch 

The asymptotic stress fields around the notch tip are given by [24] 

𝜎𝑟 = 
𝑆 I √

2 𝜋( 𝑟 ) 1− 𝜆1 

{ 

− cos 
(
1 + 𝜆1 

)
𝜃 − 

(
3 − 𝜆1 

)
sin 

(
1 + 𝜆1 

)
𝛼(

1 − 𝜆1 
)
sin 

(
1 − 𝜆1 

)
𝛼
cos 

(
1 − 𝜆1 

)
𝜃

} 

+ 
𝑆 II √

2 𝜋( 𝑟 ) 1− 𝜆2 

{ 

sin 
(
1 + 𝜆2 

)
𝜃 + 

(
3 − 𝜆2 

)
sin 

(
1 + 𝜆2 

)
𝛼(

1 + 𝜆2 
)
sin 

(
1 − 𝜆2 

)
𝛼
sin 

(
1 − 𝜆2 

)
𝜃

} 

(7) 

𝜎𝜃 = 

𝑆 I √
2 𝜋( 𝑟 ) 1− 𝜆1 

{ 

cos 
(
1 + 𝜆1 

)
𝜃 − 

(
1 + 𝜆1 

)
sin 

(
1 + 𝜆1 

)
𝛼(

1 − 𝜆1 
)
sin 

(
1 − 𝜆1 

)
𝛼
cos 

(
1 − 𝜆1 

)
𝜃

} 

+ 

𝑆 II √
2 𝜋( 𝑟 ) 1− 𝜆2 

{ 

sin 
(
1 + 𝜆2 

)
𝜃 − 

sin 
(
1 + 𝜆2 

)
𝛼

sin 
(
1 − 𝜆2 

)
𝛼
cos 

(
1 − 𝜆2 

)
𝜃

} 

(8) 

𝜎𝑟𝜃 = 
𝑆 I √

2 𝜋( 𝑟 ) 1− 𝜆1 

{ 

sin 
(
1 + 𝜆1 

)
𝜃 − 

sin 
(
1 + 𝜆1 

)
𝛼

sin 
(
1 − 𝜆1 

)
𝛼
sin 

(
1 − 𝜆1 

)
𝜃

} 

+ 
𝑆 II √

2 𝜋( 𝑟 ) 1− 𝜆2 

{ 

cos 
(
1 + 𝜆2 

)
𝜃 − 

(
1 − 𝜆2 

)
sin 

(
1 + 𝜆2 

)
𝛼(

1 + 𝜆2 
)
sin 

(
1 − 𝜆2 

)
𝛼
cos 

(
1 − 𝜆2 

)
𝜃

} 

(9) 

Fig. 1. V-shaped notch. 

Fig. 2. Variations of 𝜆1 and 𝜆2 with respect to the notch angle 2 𝛽. 

The asymptotic displacement fields are as follows [24] : 

𝑢 𝑟 = 
𝑆 𝐼 ( 𝑟 ) 𝜆1 √

2 𝜋𝐺 

{ 

− 1 
2 𝜆1 

cos 
(
1 + 𝜆1 

)
𝜃 + 

sin 
(
1 + 𝜆1 

)
𝛼(

1 − 𝜆1 
)
( 1 − 𝑡 ) sin 

(
1 − 𝜆1 

)
𝛼
cos 

(
1 − 𝜆1 

)
𝜃

} 

+ 
𝑆 𝐼𝐼 ( 𝑟 ) 𝜆2 √

2 𝜋𝐺 

{ 

− 1 
2 𝜆2 

sin 
(
1 + 𝜆2 

)
𝜃 + 

sin 
(
1 + 𝜆2 

)
𝛼(

1 + 𝜆2 
)
( 1 − 𝑡 ) sin 

(
1 − 𝜆2 

)
𝛼
sin 

(
1 − 𝜆2 

)
𝜃

} 

(10) 

𝑢 𝜃 = 
𝑆 I ( 𝑟 ) 𝜆1 √
2 𝜋𝐺 

{ 

1 
2 𝜆1 

sin 
(
1 + 𝜆1 

)
𝜃 − 

𝑡 sin 
(
1 + 𝜆1 

)
𝛼(

1 − 𝜆1 
)
( 1 − 𝑡 ) sin 

(
1 − 𝜆1 

)
𝛼
sin 

(
1 − 𝜆1 

)
𝜃

} 

+ 
𝑆 II ( 𝑟 ) 𝜆2 √

2 𝜋𝐺 

{ 

− 1 
2 𝜆2 

cos 
(
1 + 𝜆2 

)
𝜃 + 

𝑡 sin 
(
1 + 𝜆2 

)
𝛼(

1 + 𝜆2 
)
( 1 − 𝑡 ) sin 

(
1 − 𝜆2 

)
𝛼
cos 

(
1 − 𝜆2 

)
𝜃

} 

(11) 

where r, 𝜃 denotes a polar co-ordinate system centered at the notch tip 

as shown in Fig. 1 ; S I , S II and t are constants; G is the shear modulus; 

the included angle of the notch is 2 𝛽 and 𝛼 = 𝜋− 𝛽; eigenvalues 𝜆1 and 

𝜆2 are determined by following characteristic equations: 

𝜆1 sin ( 2 𝛼) + sin 
(
2 𝜆1 𝛼

)
= 0 (12) 

𝜆2 sin ( 2 𝛼) − sin 
(
2 𝜆2 𝛼

)
= 0 (13) 

The stress intensity factors are defined as follows: 

𝐾 I = lim 

𝑟 →0 

√
2 𝜋( 𝑟 ) 1− 𝜆1 𝜎𝜃||𝜃=0 (14) 

𝐾 II = lim 

𝑟 →0 

√
2 𝜋( 𝑟 ) 1− 𝜆2 𝜎𝑟𝜃||𝜃=0 (15) 

𝜆1 and 𝜆2 vary with respect to the notch angle as shown in Fig. 2 . 

From this figure, we can see that the stress singularity is mainly de- 

termined by 𝜆1 , especially for large notch angle. This feature provides 

convenience for us to get the special shape functions of the new element. 
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