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This paper presents a meshless numerical scheme for recovering the time-dependent heat source in general three- 

dimensional (3D) heat conduction problems. The problem considered is ill-posed and the determination of the 

unknown heat source is achieved here by using the boundary condition, initial condition and the extra measured 

data from a fixed point placed inside the domain. The extra measured data are used to guarantee the unique- 

ness of the solution. The generalized finite difference method (GFDM), a recently-developed meshless method, is 

then adopted to solve the resulting time-dependent boundary-value problem. In our computations, the second- 

order Crank–Nicolson scheme is employed for the temporal discretization and the proposed GFDM for the spatial 

discretization. Several benchmark test problems with both smooth and piecewise smooth geometries have been 

studied to verify the accuracy and efficiency of the proposed method. No need to apply any well-known regular- 

ization strategy, the accurate and stable solution could be obtained with a comparatively large level of noise. 

1. Introduction 

The problem of recovering the unknown heat sources arising in time- 
dependent heat conduction equations presents an interesting challenge 
in many areas of science and engineering. Specific applications can be 
found, for example, in aerospace, chemical, mechanical and nuclear en- 
gineering [1,2] . The problem belongs to the broad class of inverse source 
problems which are usually ill-posed because small random errors in 
measurement may result in arbitrarily large errors in the numerical so- 
lutions [3–5] . The existence and uniqueness of solutions for this class 
of inverse problems have been discussed by Savateev in Ref. [6] , when 
some priori information is available on the functional form of the un- 
known sources. 

Some numerical techniques for determining the unknown sources in 
a parabolic equation have been considered by many authors. In Refs. 
[7–19] , the identification of unknown sources in steady-state heat con- 
duction problems was considered. In Refs. [20–28] , several numerical 
schemes have been proposed to recover the unknown heat sources in 
transient heat conduction problems in which the heat source is taken to 
be time-dependent only. The problems of recovering a heat source de- 
pendent only on space were considered in Refs. [29–31] . In Ref. [32] the 
method of fundamental solutions (MFS) coupled with method of radial 
basis functions (RBFs) has been employed for an inverse heat source 
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problem, without any restriction for the form of unknown sources. In 
some more recent studies [33,34] , inverse source problems for frac- 
tional diffusion equations have been considered. Impressive results have 
been obtained from aforementioned techniques, however only a limited 
number of papers devoted to 3D transient heat conduction problems are 
available in the literature. The recovery of heat sources in this subject 
is one of the purposes of this paper. 

In this paper, we investigate a numerical scheme based on the gen- 
eralized finite difference method (GFDM), a relatively new meshless 
method, for the recovery of the time-dependent unknown heat source in 
3D heat conduction problems. The basis of the GFDM was proposed in 
the 80s by Lizska and Orkisz [35,36] and were later essentially extended 
and improved by Benito, Urena and Gavete [37–41] . The main idea of 
the method is to combine the Taylor series expansions and the moving- 
least squares (MLS) approximation to derive explicit formulae for the 
required partial derivatives of unknown variables. In Refs. [37,39] , Ben- 
ito et al. proposed GFDM formulae for second-order partial differential 
equations in two dimensions. The influence of key parameters, which in- 
volved criterions of point generation, weighting function and the shape 
of the domain, has been well-studied, which can be viewed as a good 
guidance for using the GFDM. An h-adaptive algorithm for GFDM were 
described in Refs. [38,42] for 2D and 3D cases, respectively. Ureña et al. 
[43] studied the GFDM solution for advection-diffusion equations and 
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further extended the method to solve third- and fourth-order partial dif- 
ferential equations in Ref. [44] . In 2013, Gavete et al. [45] show the 
application of the GFDM to dynamic analysis of several problems. In a 
more recent study, Gavete et al. [41] described how to solve second- 
order non-linear elliptic partial differential equations using the GFDM. 
The GFDM was also discussed and extended by many other authors, 
such as Fan et al. [46] for solving inverse biharmonic boundary-value 
problems, Chan et al. [47] for 2D non-linear obstacle problems, Gu et al. 
[10] for inverse steady-state heat conduction problems, and Hua et al. 
[48] for inverse Helmholtz problems. The goal of this paper is to ap- 
ply the GFDM to the identification of the unknown sources in 3D time- 
dependent heat source problems. To our knowledge, this is the first time 
that the GFDM is extended to solve this kind of inverse problems. 

A brief outline of the rest of the paper is organized as follows. In 
Section 2 , the mathematical formulation for an inverse time-dependent 
source problem is briefly introduced. Section 3 presents the method- 
ology of the GFDM and its numerical implementation for general 3D 

partial differential equations. The numerical strategies of the GFDM for 
inverse problems are also discussed. Next, in Section 4 , several numer- 
ical examples involving both smooth and piecewise smooth geometries 
are presented. Finally, some conclusions and remarks are provided in 
Section 5 . 

2. Mathematical formulation for inverse time-dependent source 

problems 

Consider a general three-dimensional homogeneous, isotropic do- 
main Ω with boundary 𝜕Ω which was assumed to be sufficiently smooth 
in the sense of Liapunov. In this paper, we consider the following in- 
verse heat source problem, to find a pair of functions ( u ( x, y, z, t ), f ( t )), 
which satisfy the governing equation as follows: 

𝜕𝑢 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 
𝜕𝑡 

= 

𝜕 2 𝑢 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 
𝜕 𝑥 2 

+ 

𝜕 2 𝑢 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 
𝜕 𝑦 2 

+ 

𝜕 2 𝑢 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 
𝜕 𝑧 2 

+ 𝑓 ( 𝑡 ) , (1) 

with the following initial and boundary conditions: 

𝑢 ( 𝑥, 𝑦, 𝑧, 0) = 𝑢 0 ( 𝑥, 𝑦, 𝑧 ) , ( 𝑥, 𝑦, 𝑧 ) ∈ Ω, (2) 

𝑢 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑏 ( 𝑥, 𝑦, 𝑧, 𝑡 ) , ( 𝑥, 𝑦, 𝑧 ) ∈ 𝜕Ω, 𝑡 ∈ [0 , 𝑡 max ] . (3) 

In the above Eqs. (1)–(3) , u 0 ( x,y, z ) and b ( x, y, z, t ) are given func- 
tions, while functions u ( x, y, z, t ) and f ( t ) are unknown. Problem (1)–(3) 
is ill-posed and in order to guarantee the uniqueness of the solution, as 
illustrated in Refs. [20,27] , the following extra measured data at a fixed 
point ( x 0 , y 0 , z 0 ) ∈ Ω should be given: 

𝑢 ( 𝑥 0 , 𝑦 0 , 𝑧 0 , 𝑡 ) = ℎ ( 𝑡 ) , 𝑡 ∈ [0 , 𝑡 max ] , (4) 

where h ( t ) is a given function. The existence and uniqueness of solutions 
to such inverse problems have been studied in Ref. [18] . 

Let us define the following variable transformation [20,23] : 

𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑢 ( 𝑥, 𝑦, 𝑧, 𝑡 ) − ∫
𝑡 

0 
𝑓 ( 𝜉) 𝑑𝜉, (5) 

which transforms the original problem (1)–(4) into the following homo- 
geneous partial differential equation: 

𝜕𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 
𝜕𝑡 

= 

𝜕 2 𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 
𝜕 𝑥 2 

+ 

𝜕 2 𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 
𝜕 𝑦 2 

+ 

𝜕 2 𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) 
𝜕 𝑧 2 

, (6) 

with the following boundary/initial conditions: 

𝑇 ( 𝑥, 𝑦, 𝑧, 0) = 𝑢 0 ( 𝑥, 𝑦, 𝑧 ) , ( 𝑥, 𝑦, 𝑧 ) ∈ Ω, (7) 

𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑏 ( 𝑥, 𝑦, 𝑧, 𝑡 ) − ∫
𝑡 

0 
𝑓 ( 𝜉) 𝑑𝜉, ( 𝑥, 𝑦, 𝑧 ) ∈ 𝜕Ω, 𝑡 ∈ [0 , 𝑡 max ] , (8) 

and the extra measured data at point ( x 0 , y 0 , z 0 ) ∈ Ω become 

𝑇 ( 𝑥 0 , 𝑦 0 , 𝑧 0 , 𝑡 ) = ℎ ( 𝑡 ) − ∫
𝑡 

0 
𝑓 ( 𝜉) 𝑑𝜉, 𝑡 ∈ [0 , 𝑡 max ] . (9) 

In the right-hand side of Eqs. (8) and (9) , the function f ( 𝜉) is un- 
known. By substituting Eq. (8) into (9) for eliminating the function f ( 𝜉), 
it can obtainthe following equation: 

𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) − 𝑇 ( 𝑥 0 , 𝑦 0 , 𝑧 0 , 𝑡 ) = 𝑏 ( 𝑥, 𝑦, 𝑧, 𝑡 ) − ℎ ( 𝑡 ) , 

( 𝑥, 𝑦, 𝑧 ) ∈ 𝜕Ω, 𝑡 ∈ [0 , 𝑡 max ] . (10) 

The numerical solutions of T ( x, y, z, t ) can then be obtained by solv- 
ing the above Eqs. (6) , (7) and (10) . 

Let 𝑟 ( 𝑡 ) = ∫ 𝑡 

0 𝑓 ( 𝜉) 𝑑𝜉 and substituting T ( x, y, z, t ) into Eq. (5) , we have 

𝑟 ( 𝑡 ) = ∫
𝑡 

0 
𝑓 ( 𝜉) 𝑑𝜉 = 𝑢 ( 𝑥 0 , 𝑦 0 , 𝑧 0 , 𝑡 ) − 𝑇 ( 𝑥 0 , 𝑦 0 , 𝑧 0 , 𝑡 ) = ℎ ( 𝑡 ) − 𝑇 ( 𝑥 0 , 𝑦 0 , 𝑧 0 , 𝑡 ) . 

(11) 

Using the procedure described above, the solutions of the original 
problem (1)–(3) are then given by 

𝑢 ( 𝑥, 𝑦, 𝑧, 𝑡 ) = 𝑇 ( 𝑥, 𝑦, 𝑧, 𝑡 ) + 𝑟 ( 𝑡 ) , (12) 

and the unknown heat source f ( t ) can be obtained as follows 

𝑓 ( 𝑡 ) = 

𝑑 

(∫ 𝑡 

0 𝑓 ( 𝜉) 𝑑𝜉
)

𝑑𝑡 
= 

𝑑𝑟 ( 𝑡 ) 
𝑑𝑡 

. (13) 

It is noted that the solutions of Eq. (13) (the first derivative with re- 
spect to time) can be obtained numerically by using, for example, back- 
ward/forward Euler method, Crank–Nicolson method, and/or Runge–
Kutta method. In our computations, this was achieved by using the cen- 
tral difference formula: 

𝑓 ( 𝑡 𝑖 ) = 

𝑑𝑟 ( 𝑡 ) 
𝑑𝑡 

||||𝑡 = 𝑡 𝑖 = 

𝑟 ( 𝑡 𝑖 +1 ) − 𝑟 ( 𝑡 𝑖 −1 ) 
2Δ𝑡 

. (14) 

3. The numerical method 

Without loss of generality, let us consider the following 3D parabolic 
differential equation: 

𝜕𝑇 

𝜕𝑡 
= 𝑎 1 

𝜕 2 𝑇 

𝜕 𝑥 2 
+ 𝑎 2 

𝜕 2 𝑇 

𝜕 𝑦 2 
+ 𝑎 3 

𝜕 2 𝑇 

𝜕 𝑧 2 
, (15) 

or for brevity 

𝜕𝑇 

𝜕𝑡 
= 𝐿 2 [ 𝑇 ] , (16) 

where L 2 [ T ] is a linear second-order partial differential operator. a 1 , a 2 , 
and a 3 are constants. The boundary and initial conditions for problem 

(15) are the same as these shown in Eqs. (2) and (3) . 
For the time-dependent problem considered here, we first separate 

the problem into, as in the finite element (FEM) and boundary element 
(BEM) methods, the space-domain and the time-domain parts. The pro- 
posed GFDM is then employed for discretization in the spatial domain 
and the second-order Crank–Nicolson scheme [49] for discretization in 
the time variable. 

3.1. The GFDM for discretization in space-domain 

First, we consider the GFDM for the numerical solution of the equa- 
tion in the space variables, i.e., L 2 [ T ]. 

First of all, in order to obtain the explicit GFDM formulae for partial 
differential equations, an irregular cloud of points, as shown in Fig. 1 , 
is scattered in the computational domain. For each given node x 0 (cen- 
tral node), the m nearest nodes x i ( i = 1, 2, ..., m ) (neighbors or support 
nodes) will be found within a prescribed distance d m 

from the central 
node, | x i − x 0 | ≤ d m 

. According to Gavete et al. [39] , the concept of the 
" star " then refers to the area of support nodes in relation to the central 
node (see Fig. 1 ). Note that each node scattered inside the computational 
domain has an associated star assigned. 

Suppose T 0 is the value of the function at the central node x 0 and 
T i ( i = 1, 2, ..., m ) are the function values at the rest of the nodes x i inside 
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