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a b s t r a c t 

In the current investigation, we develop an efficient truly meshless technique for solving two models in optic 

and laser engineering i.e. Klein-Gordon-Zakharov and Schrödinger/Gross-Pitaevskii equations in one- two- and 

three-dimensional cases. The employed meshless is the upwind local radial basis functions-differential quadrature 

(LRBF-DQ) technique. The spacial direction is discretized using the LRBF-DQ method and also to obtain high- 

order numerical results, the fourth-order exponential time differencing Runge-Kutta method (ETDRK4) planned 

by Liang et al. [37] is applied to discrete the temporal direction. To show the efficiency of the proposed method, 

we solve the mentioned models on some complex shaped domains. Moreover, several examples are given and 

simulation results show the acceptable accuracy and efficiency of the proposed scheme. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recently meshless methods have been used for solving partial dif- 
ferential, integral and stochastic equations [34] . The meshless methods 
don ’t use any mesh, element or lattice to discrete the computational 
domain for obtaining some numerical results [22] . The mentioned 
property is a basic advantage for the meshless methods. The meshless 
methods can be classified in the two basic classes: 

• The global form, 
• The local form. 

The meshless methods based on the global form can be applied 
for solving partial differential equations and integral equations, easily 
[2–4,22,35] . But these methods have some deficits for solving some 
PDEs such as advection equations and problems with blow up in 
solutions. In other hand, to overcome the mentioned deficiency the 
local meshless methods have been introduced. It should be noted that 
these techniques can be split in two forms [15,58] : 

• Local meshless methods based on the variational (local) weak form, 
• Local meshless methods based on the strong form. 
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In the first class, there are some integrals that must be computed 
thus these methods have more difficulty and need more CPU time. But 
the second class lacks any integral, thus is very flexible to solve all 
models with nonlinear term [61,62] . 

One of the local meshless collocation methods is the RBFs fi- 
nite difference (RBFs-FD) method. The RBF-FD idea is developed in 
[23,27,28,43,44,47,50,51] . Authors of [26] developed a filter approach 
for RBF-FD that is related to traditional hyperviscosity and which can 
be applied quickly in any number of dimensions. Also, some analytical 
explanations related to the weights of Gaussian RBF-FD formula are 
obtained in [9] . The main aim of [7,8,10] is to obtain an optimal shape 
parameter for RBF-FD technique. 

Recently, the RBF-FD has been employed and developed by re- 
searchers for example solving large-scale geoscience modeling [25] , 
hyperbolic PDEs on the sphere [14] and diffusion- and also reaction- 
diffusion equations on closed surfaces [45] . Also see [8] . 

The differential quadrature method was first introduced by Bellman 
et al. [11] . The polynomial functions have been selected as the test 
function [46] . For the first time, authors of [47] proposed the meshless 
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RBF-DQ method by using the RBFs. The RBF-DQ method is similar to 
the LRBF and RBF-FD methods. 

The RBFs-DQ is employed for solving several PDEs such as equations 
in fluid dynamic [47,48] , system of boundary value problems [20] , 
coupled Klein–Gordon–Zakharov equations [21] , doubly-curved shells 
made of composite materials [52] , Stokes flow problem in a circular 
cavity [32] , simulating natural convection in concentric annuli [59] etc. 

The nonlinear partial differential equations (PDEs) play important 
role in modeling natural phenomena as many concepts in physics 
can be modeled by nonlinear PDEs [55,56] . In the current paper, we 
consider the following models: 

1. The Schrödinger/Gross–Pitaevskii equation, 
2. The Klein–Gordon–Zakharov (KGZ) equation. 

1.1. Organization chart and the main aim of the manuscript 

In the current paper, we employ the meshless local RBF-DQ method 
for solving the multi-dimensional Schrödinger/Gross–Pitaevskii and 
Klein–Gordon–Zakharov (KGZ) equations. To this end, we employ the 
meshless local RBF-DQ technique to discrete the spatial direction and 
a finite difference scheme for the temporal variable. We apply the pro- 
posed technique on some complex computational domains in two- and 
three-dimensional cases. As is well-known, the dispersion error related 
to a numerical technique has a direct effect for simulating the wave 
propagation phenomena. In other word, the wave frequency of the nu- 
merical solution and the wave frequency of the exact solution oppose 
and this difference can be increased when the frequency is increasing. In 
this case, the numerical techniques such as finite difference or finite ele- 
ment methods can not obtain accurate approximate solutions in limited 
to middle frequency range. In the current paper, we have proposed a nu- 
merical technique that it has suitable accuracy for the mentioned issue. 

The structure of this article is as follows: 

• In Section 2 , we explain the local radial basis function-differential 

quadrature (RBF-DQ) method. 

• In Section 3 , applying the local RBFs-DQ method on SGP equation is 

proposed. 

• In Section 4 , applying the local RBFs-DQ method on KGZ equation is 

developed. 

• In Section 5 , we report the numerical experiments of solving the consid- 

ered models for some test problems. 

• Finally, a brief conclusion of the current paper has been written in 

Section 6 . 

1.2. The Klein–Gordon–Zakharov equation. 

The d -dimensional Klein–Gordon–Zakharov equation is 
[5,12,39,60] 

𝜕 2 𝑢 ( 𝐱, 𝑡 ) 
𝜕 𝑡 2 

− 3 𝜈2 0 Δ𝑢 ( 𝐱, 𝑡 ) + 𝜔 

2 
𝑝 𝑢 ( 𝐱, 𝑡 ) + 𝜔 

2 
𝑝 𝑣 ( 𝐱, 𝑡 ) 𝑢 ( 𝐱, 𝑡 ) = 0 , (1.1) 

𝜕 2 𝑣 ( 𝐱, 𝑡 ) 
𝜕 𝑡 2 

− 𝑐 2 𝑠 Δ𝑣 ( 𝐱, 𝑡 ) − 

𝑛 0 𝜀 0 
4 𝑚 𝑁 0 

Δ
(
𝑣 2 ( 𝐱, 𝑡 ) 

)
= 0 , (1.2) 

in which u and 𝑣 are real-valued functions representing the fast time 
scale component of the electric field raised by electrons and the 
derivation of ion density from its equilibrium, respectively. Also, in the 
above relations: 

• 𝜔 p is the electron plasma frequency, 
• c s is the speed of sound, 
• 𝜈0 is the electron thermal velocity, 
• n 0 is plasma charge number, 
• 𝜀 0 is vacuum dielectric constant, 
• N 0 is electron density, 
• m is ion mass. 

For the most important applications of Eq. (1.1) , we can mention : 

• describing the mutual interaction between the Langmuir waves and 
ion acoustic waves in a plasma [13] , 

• adopted to model the strong Langmuir turbulence [13] . 

As is mentioned in [5] , Eq. (1.1) can be derived from the two-fluid 
Euler-Maxwell system for the electrons, ions and electric field, by 
neglecting the magnetic field and further assuming that ions move 
much slower than electrons [5,12] . Under a proper nondimensional- 
ization [39] , the dimensionless Klein–Gordon–Zakharov system in d 

dimensions ( 𝑑 = 1 , 2 , 3) reads 

⎧ ⎪ ⎨ ⎪ ⎩ 
𝜀 2 𝑢 𝑡𝑡 − Δ𝑢 + 

1 
𝜀 2 

𝑢 + 𝑣𝑢 = 0 , 

𝑣 𝑡𝑡 − Δ𝑣 − Δ𝑣 2 = 0 , 
in 𝑅 

𝑑 , (1.3) 

where 𝜀 is a dimensionless parameter inversely proportional to the 
plasma frequency and is given by 

0 < 𝜀 = 

√
3 𝜈0 

𝑥 𝑠 𝜔 𝑝 

= 

𝜔 𝑠 

𝜔 𝑝 

≤ 1 , 𝜔 𝑠 = 

√
3 𝜈0 
𝑥 𝑠 

. 

1.3. The Schrödinger/Gross-Pitaevskii (SGP) equation 

The generalized Gross-Pitaevskii equation is as follows: 

𝑖 𝑢 𝑡 + 𝛽∇ 

2 𝑢 + 𝛾|𝑢 |2 𝑢 + 𝑉 𝑢 + 𝑊 = 0 , in Ω, 𝑡 > 0 , (1.4) 

with Dirichlet boundary condition 

𝑢 ( 𝐱, 𝑡 ) = 𝑔( 𝐱, 𝑡 ) , 𝐱 ∈ 𝜕Ω, 𝑡 > 0 , (1.5) 

and initial condition 

𝑢 ( 𝐱, 0) = ℎ ( 𝐱) , 𝐱 ∈ Ω. (1.6) 

The Gross–Pitaevskii equation is presented for the first time by Gross 
[29] and Pitaevskii [41] that describes the ground state of a quantum 

system of identical bosons using the Hartree-Fock approximation and 
the pseudo-potential interaction model [54] . The mentioned equation 
has been solved by different methods for example improving the clas- 
sical variational approximation (VA) theory and applying the method 
of asymptotic analysis [38] , a new lattice Boltzmann model for the 
interaction of two solitons [53] , the adaptive grids based on wavelet 
method with time-splitting finite difference method [36] , Kansa ’s 
approach and meshless local Petrov–Galerkin (MLPG) method [17] , a 
Chebyshev pseudospectral multidomain method [18] , a combination of 
boundary knote method (BKM) and meshless analog equation method 
(AEM) [19] , spectral Fourier or spherical harmonics in the angular 
coordinates combined with generalised-Laguerre basis functions in the 
radial direction [42] , a quantized vortex lattice dynamics in a rotating 
BEC [1] , adaptive time-splitting schemes combined with fast Fourier 
transform techniques [49] , etc. 

2. The local RBFs-DQ method 

At first, we present some explanations for radial basis functions. 

2.1. A brief preliminaries for radial basis functions (RBFs) technique 

In the current section, we explain the local RBF-DQ method thus at 
first we give some preliminaries for the radial basis function. 

Definition 2.1. [24,57] A real valued continuous function 𝜙 ∈ ℝ 

𝑑 ⟶
ℂ is positive definite if for all sets 𝑋 = { 𝑥 1 , … , 𝑥 𝑁 

} ⊂ ℝ 

𝑑 of distinct 
points and all vectors 𝜆 ∈ ℝ 

𝑑 
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