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This paper describes a new type of hybrid fundamental solution based finite element method (HFS-FEM) for 

analysis of axisymmetric potential problems in multiply connected domain. In this approach, two independent 

potential fields are assumed within the element domain and on its boundary respectively. The fundamental 

solutions are utilized as internal trial functions to construct the non-conforming intra-element potential field. 

And the inter-element continuity is enforced by the conforming frame potential field which is of the same form 

as in the conventional FEM. Then, the axisymmetric modified variational functional is employed to derive the 

HFS finite element formulation. Finally, three numerical examples are given to demonstrate the validity, high- 

efficiency and robustness of the proposed method. 

1. Introduction 

The hybrid Trefftz finite element method (HT-FEM) [1,2] is widely 

reported in the literature, in which two independent assumed fields 

(non-conforming internal field and auxiliary conforming frame field) 

are usually employed. However, the drawback of the HT-FEM is that it 

is difficult to generate Trefftz functions for some physical problems and 

the terms of truncated T-complete functions should be carefully selected 

in achieving desired results. To remove the drawback, the hybrid fun- 

damental solution based finite element method (HFS-FEM) has gained 

much attention in recent years [3–6] . In the method, the intra-element 

field in HFS-FEM is approximated by the linear combination of funda- 

mental solutions at different points satisfying the corresponding gov- 

erning equations, instead of T-complete functions adopted in HT-FEM. 

Adjacent elements are linked by inter-element boundary approximations 

constructed by the conventional nodal interpolation. A modified varia- 

tional functional is established to enforce the inter-element continuity 

and derive the resultant element stiffness equation. The use of funda- 

mental solutions can readily convert the domain integral in the modi- 

fied variational functional to the boundary ones. To avoid the singular 

integrals inherited in fundamental solutions, all the source points are 

located outside each element as done in the method of fundamental so- 

lutions (MFS). Obviously, the HFS-FEM possesses all the advantages of 

HT-FEM and eliminates some of its drawbacks such as the intractability 

in establishing and selecting Trefftz functions [4] . 

The potential problems governed by Laplace equation appear in 

many scientific fields, like the heat conduction, seepage, corrosion, tor- 
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sion problems and so on [7–13] . One of the earliest contributions to ax- 

isymmetric potential problems was conducted by Karageorghis and Fair- 

weather [9] who employed the MFS to investigate the steady-state heat 

conduction and torsion. Recently, Smyrlis and Karageorghis [11] de- 

veloped a meshless boundary collocation method for the solution of 

steady-state heat conduction in an isotropic bimaterial. In the past two 

decades, both HT-FEM and HFS-FEM have been successfully applied to 

two- dimensional (2D) and even three-dimensional (3D) potential prob- 

lems. When the domain and boundary conditions are both axisymmet- 

ric, the original 3D problems usually reduce to solving the 2D cases 

with less computational time and memory. Wang et al. [14] developed 

a four-node hybrid Trefftz annular element for analyzing the axisym- 

metric potential problems. The internal potential field is approximated 

by the suitably truncated quasi-harmonic polynomials and the annular 

element is immune to the mesh distortion. To the authors ’ knowledge, 

few reports on the HFS-FEM for analyzing axisymmetric potential prob- 

lems are available in the literature. Wang and Qin [15] investigated 

the axisymmetric thermal behavior of composites enhanced with car- 

bon nanofibers or nanotubes by using the HFS-FEM and cylindrical rep- 

resentative volume element (RVE). 

In the current study, an eight-node quadrilateral HFS annular el- 

ement is proposed for investigating the axisymmetric potential prob- 

lems in the multiply connected domain. A brief outline of this paper is 

listed as follows. In Section 2 , the basic theory and formulations of HFS- 

FEM are presented through a simple description of axisymmetric poten- 

tial problems. The performance of HFS-FEM is numerically assessed in 

Section 3 in comparison with the analytical solutions and conventional 
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Fig. 1. An eight-node annular element for the axisymmetric potential problems. 

finite element (ABAQUS) results. Concluding remarks and possible ex- 

tensions are discussed in Section 4 . 

2. Theory 

2.1. Governing equations 

Let us consider the following 3D potential problem 
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= 0 in Ω∗ (1) 

subject to the boundary conditions including Dirichlet boundary condi- 

tion 

𝑢 ( 𝑥, 𝑦, 𝑧 ) = 𝑢 ( 𝑥, 𝑦, 𝑧 ) on Γ∗ 
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(2) 

and Neumann boundary condition 
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where 𝜆 stands for the property coefficient and Ω∗ denotes a bounded 

domain in ℜ 

3 space with boundary Γ∗ ( Γ∗ = Γ∗ 
𝑢 
∪ Γ∗ 

𝑞 
). Additionally, n x , 

n y and n z represent direction cosines of the outward normal at a given 

boundary point. The region Ω∗ ∈ ℜ 

3 is axisymmetric, that is, formed as 

a geometry of revolution by rotating a planar domain Ω with boundary 

Γ about the z axis. When the boundary conditions are also axisymmetric, 

it is obvious that both u and its normal derivative q on the boundary Γ
are independent of the azimuthal angle 𝜃 [16] . For simplicity, the 3D 

potential problem will reduce to solving an axisymmetric version in the 

cylindrical coordinates r and z : 
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together with the boundary conditions 

𝑢 ( 𝑟, 𝑧 ) = 𝑢̄ ( 𝑟, 𝑧 ) on Γ𝑢 (5) 

and 
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where ∇ 

2 denotes the Laplace operator and Γ= Γu ∪ Γq . 

2.2. Assumed fields and formulation of HFS-FEM 

2.2.1. Non-conforming intra-element potential field 

Two independent assumed potential fields are employed over each 

element, say element e , which occupies the sub-domain Ωe . To eliminate 

the singularities of fundamental solutions, the field variable defined in 

the element domain is expressed by a linear combination of fundamen- 

tal solutions centered at different sources located outside the element 

[4] (see Fig. 1 ). Thus, the non-conforming intra-element potential field 

is given by 

𝑢 𝑒 ( 𝐐 ) = 

𝑛 𝑠 ∑
𝑗=1 

𝑁 𝑒 

(
𝐏 𝑗 , 𝐐 

)
𝑐 ej = 𝐍 𝑒 ( 𝐐 ) 𝐜 𝑒 ∀𝐐 ∈ Ω𝑒 , 𝐏 𝑗 ∉ Ω𝑒 (7) 

where c ej are undetermined coefficients and n s is the number of vir- 

tual sources outside the element. The fundamental solution of Eq. (7) , 

N e ( P j , Q ), usually satisfies 

∇ 
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2 (8) 

which gives 

𝑁 𝑒 ( 𝐏 , 𝐐 ) = 

4 𝐾( 𝑘 ) 
𝑅 

(9) 

where 𝐏 = { 𝑟 𝑃 , 𝑧 𝑃 } T is the virtual source point outside the ele- 

ment, Q = { r Q , z Q } 
T is the field point within the element domain, 

R 

2 = ( r Q + r P ) 
2 + ( z Q − z P ) 

2 , K ( k ) is the complete elliptic integral of the 

first kind defined by 

𝐾 ( 𝑘 ) = ∫
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]−1∕2 
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and here 

𝑘 2 = 4 𝑟 𝑄 

𝑟 𝑃 ∕ 𝑅 

2 (11) 

In the implementation, the location of sources are usually generated by 

means of the following relation employed in the method of fundamental 

solutions [17,18] : 

𝐏 = 𝐐 𝑏 + 𝛾
(
𝐐 𝑏 − 𝐐 𝑐 

)
(12) 

where 𝛾 is a dimensionless parameter, Q b is the elemental boundary 

point (the nodal and/or the middle nodes of the element in the current 

study), and Q c is the centroid of the element. In case the source points 

are too close to the element boundary, the solution is not accurate while 

in case they are too far away from the element boundary, the discretiza- 

tion matrix becomes ill-conditioned. Therefore, the optimal value of 𝛾

should be determined by numerical examples. Fig. 1 displays the sources 

which are generated by the nodes of the element. 

The corresponding outward normal derivative of u e on Γe may be 

expressed as 

𝑞 𝑒 = 

𝑛 𝑠 ∑
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where 
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