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a b s t r a c t 

To reduce the negative effect of different kernel functions on calculating accuracy, the radial basis function (RBF) 
is introduced into the reproducing kernel particle method (RKPM), and the radial basis reproducing kernel particle 
method (RRKPM) is proposed, the corresponding governing equations are derived. The RRKPM is more efficient 
to solve the local problem domain, and can improve the accuracy and stability of the RKPM. Then the RRKPM 

is applied to the numerical simulation of piezoelectric materials, the corresponding formulae for piezoelectric 
materials are derived. The numerical results illustrate the proposed method is more stable and accurate than the 
RKPM. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Piezoelectric materials have electro–mechanical coupling character- 
istics, and have been widely used in sensors and actuators [1,2] . Sensors 
and actuators are the main part of the electronic control system, and 
their accuracy, sensitivity and stability have a great effect on the per- 
formance of the electronic control system. So it is important to simulate 
the sensing and driving properties of piezoelectric material. 

When the piezoelectric material is subjected to a machanical defor- 
mation, the voltage is generated in the material. Likewise, if a voltage 
is applied to the piezoelectric material, displacement is generated in the 
material. These two phenomena are called the direct piezoelectric effect 
and the indirect piezoelectric effect, respectively. Based on the direct 
piezoelectric effect and the indirect piezoelectric effect, various instru- 
ments were designed, such as pressure sensors, buzzers, microphones, 
ultrasonic rotary motors, piezoelectric filters, infrared detectors [3] , etc. 

At present, the numerical simulation is the main method to research 
piezoelectric material because it can quickly and efficiently solve the 
domain. Numerical simulation methods mainly include finite element 
method (FEM) [4,5] , boundary element method (BEM) [6] , finite dif- 
ference method (FDM) [7] and meshless method (MM) [8,9] , etc. The 
FEM is the most general numerical method in engineering calculation, 
but the FEM needs to spend a lot of time to achieve the refinement of 
the meshes when solving the local domain problem of complex structure 
precisely, besides, the adaptive analysis is difficult. The BEM needs to 
integrate domain to solve the problem, it shows strong singularity near 
the singular point and difficult to calculate. The FDM is very compli- 
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cated in the handling of irregular areas, and unsuitable for dealing with 
engineering problems which have complex boundary conditions. 

The meshless method has developed in recent years, and has the 
advantages of quick calculation and high precision when it is used to 
solve problem of piezoelectric material [10] . The meshless method uses 
a series of appropriate scattered nodes to analyze the problem domain 
and boundary, and constructs the approximate function in the problem 

domain. When the problem domain is needed to solve precisely, it only 
needs to increase the number of nodes. Compared with the FEM, the 
meshless method does not depend on the meshes and the relationships 
of nodes, the amount of storage can be saved. 

There are a variety of meshless methods, such as the reproducing ker- 
nel particle method (RKPM) [11–13] , the radial basis function method 
(RBF) [14,15] , the element-free Galerkin method (EFGM) [16–19] , the 
finite point method (FPM) [20,21] , the partition of unity method (PUM) 
[22,23] , the polynomial point interpolation method (PPIM) [24,25] , the 
moving least-squares method (MLS) [26–28] , the local Petrov–Galerkin 
method (LPGM) [29–32] , the smooth particle hydrodynamics (SPH) 
[33,34] , the boundary integral equation method (BIEM) [35,36] , the 
Hermite radial point interpolation (Hermite RPI) [37–40] and the mesh- 
less manifold method (MMM) [41,42] . 

The core of the RKPM is that a series of the reproducing kernel func- 
tions are constructed by using approximate functions in the problem do- 
main. The RKPM has been used to solve displacements and electric po- 
tential of piezoelectric materials because of its fast convergence speed. 
But in the process of solving the domain, the different kernel function 
has a negative effect on the calculating accuracy. In order to eliminate 
the defect of kernel function in aspect of calculating accuracy, the RBF is 
introduced to the RKPM, and the radial basis reproducing kernel particle 
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method (RRKPM) is presented in this paper. The accuracy and stability 
of the RRKPM are proved by the numerical examples of piezoelectric 
bimorph cantilever beam and the piezoelectric strip. 

2. The governing equations of piezoelectric materials 

In the x –z plane, the constitutive equations of the piezoelectric ma- 
terials can be analyzed from two respects of the strain and the electric 
field 

𝝈 = 𝒄 𝐸 𝜺 − 𝑒 𝑬 (1) 

𝑫 = 𝒆 𝜺 + 𝝃𝜀 𝑬 (2) 

where 𝜺 , 𝝈, E and D are the strain tensor, the stress tensor, the electric 
field tensor and the electric displacement tensor, respectively. e , c E and 
𝝃𝜀 are the piezoelectric constant matrix, the elastic stiffness matrix and 
the dielectric constant matrix, respectively. The superscripts 𝜀 and E 
represent the coefficients measured under constant electric and stress 
conditions. 

The relationship between strain and displacement can be expressed 
as 

𝜀 𝑖𝑗 = 

1 
2 
( 𝑢 𝑖,𝑗 + 𝑢 𝑗,𝑖 ) (3) 

Where i, j represent x, z , respectively, and the above condensed re- 
lationship can be rewritten as 

𝜀 𝑥 = 𝜀 𝑥𝑥 = 𝑢 ,𝑥 (4) 

𝜀 𝑧 = 𝜀 𝑧𝑧 = 𝑤 ,𝑧 (5) 

𝛾𝑥𝑧 = 2 𝜀 𝑥𝑧 = 𝑢 ,𝑧 + 𝑤 ,𝑥 (6) 

where u and w represent the displacements in the x and z -directions, re- 
spectively. Commas followed by indices represent partial differentiation 
with regard to the respective coordinate (i.e. u , x = 𝜕 u / 𝜕 x ). 

The relationship between electric field and electric potential can be 
given as 

𝐸 𝑖 = − 𝜙,𝑖 (7) 

The mechanical equilibrium equations for piezoelectric materials is 

𝜎𝑖𝑗,𝑗 = 0 (8) 

The electrical equilibrium equation for piezoelectric materials is 

𝐷 𝑖,𝑖 = 0 (9) 

Substituting Eqs. (1) , (2) , (4) –(6) and (7) into equilibrium Eqs. (8) 
and (9) , the equilibrium equations can be written in the forms of 
displacement and electric potential. ⎡ ⎢ ⎢ ⎣ 
𝜎𝑥 

𝜎𝑧 

𝜏𝑥𝑧 

⎤ ⎥ ⎥ ⎦ = 

⎡ ⎢ ⎢ ⎣ 
𝑐 11 𝑐 13 0 
𝑐 13 𝑐 33 0 
0 0 𝑐 55 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝜀 𝑥 
𝜀 𝑧 
𝛾𝑥𝑧 

⎤ ⎥ ⎥ ⎦ − 

⎡ ⎢ ⎢ ⎣ 
0 𝑒 31 
0 𝑒 33 
𝑒 15 0 

⎤ ⎥ ⎥ ⎦ 
[ 
𝐸 𝑥 

𝐸 𝑧 

] 
(10) 

[ 
𝐷 𝑥 

𝐷 𝑧 

] 
= 

[ 
0 0 𝑒 15 
𝑒 31 𝑒 33 0 

] ⎡ ⎢ ⎢ ⎣ 
𝜀 𝑥 
𝜀 𝑧 
𝛾𝑥𝑧 

⎤ ⎥ ⎥ ⎦ + 

[ 
𝜉𝜀 
11 0 
0 𝜉𝜀 

33 

] [ 
𝐸 𝑥 

𝐸 𝑧 

] 
(11) 

The governing mechanical equilibrium equations of the piezoelectric 
materials are 

𝑐 11 𝑢 ,𝑥𝑥 + 𝑐 55 𝑢 ,𝑧𝑧 + ( 𝑐 13 + 𝑐 55 ) 𝑤 ,𝑥𝑧 + ( 𝑒 31 + 𝑒 15 ) 𝜙,𝑥𝑧 = 0 (12) 

( 𝑐 13 + 𝑐 55 ) 𝑢 ,𝑥𝑧 + 𝑐 33 𝑤 ,𝑧𝑧 + 𝑐 55 𝑤 ,𝑥𝑥 + 𝑒 33 𝜙,𝑧𝑧 + 𝑒 15 𝜙,𝑥𝑥 = 0 (13) 

The governing electrical equilibrium equations of piezoelectric ma- 
terials is 

( 𝑒 31 + 𝑒 15 ) 𝑢 ,𝑥𝑧 + 𝑒 15 𝑤 ,𝑥𝑥 + 𝑒 33 𝑤 ,𝑧𝑧 − 𝜉𝜀 
11 𝜙,𝑥𝑥 − 𝜉𝜀 

33 𝜙,𝑧𝑧 = 0 (14) 

3. The RRKPM of piezoelectric materials 

The approximate displacement function w 

h ( x,z ) can be expressed as 
the combination of the radial basis functions constructed by internal 
nodes ( n m 

) and the reproducing kernel functions constructed by the all 
nodes ( n ) in local supporting domain. 

𝑤 

ℎ ( 𝑥, 𝑧 ) = 

𝑛 ∑
𝑘 =1 

𝑅 𝑘 ( 𝑥, 𝑧 ) 𝑐 𝑘 + 

𝑛 𝑚 ∑
𝑖 =1 

𝑅 

𝑚 
𝑖 
( 𝑥, 𝑧 ) 𝑎 𝑖 (15) 

where a i and c k are undetermined coefficients; n is the number of all 
nodes in the local supporting domain; n m 

is the number of internal 
nodes; 𝑅 

𝑚 
𝑖 

is a radial basis function constructed by internal nodes; R k 

is a reproducing kernel function constructed by the all nodes. 
In Eq. (15) , the radial basis function 𝑅 

𝑚 
𝑖 

can be expressed as a class of 

functions, 𝑟 𝑖 = 

√ 

( 𝑥 − 𝑥 𝑖 ) 2 + ( 𝑧 − 𝑧 𝑖 ) 2 , and r i depends only on the distance 
between evaluation nodes ( x, z ) and the nodes ( x i , z i ) 

𝑅 

𝑚 
𝑖 
( 𝑥, 𝑧 ) = 

(
1 − 

𝑟 𝑖 

𝛿

)5 
( 

8 + 40 
𝑟 𝑖 

𝛿
+ 48 

𝑟 𝑖 
2 

𝛿2 
+ 25 

𝑟 𝑖 
3 

𝛿3 
+ 5 

𝑟 𝑖 
4 

𝛿4 

) 

(16) 

where 𝛿 is the shaped parameter, the reproducing kernel function can 
be given as 

𝑅 𝑘 ( 𝑥, 𝑧 ) = 𝑐 𝑘 ( 𝑥 − 𝑥 𝐼 , 𝑧 − 𝑧 𝐼 ) 𝑤 ( 𝑟 𝑘 ) 𝑅 𝑘 ( 𝑥 𝐼 , 𝑧 𝐼 )Δ𝑉 𝐼 (17) 

where x I and z I are the coordinates of node I, R k ( x I ,z I ) is the unknown 
parameter of node I, ΔV I is the influence domain of node I . 

𝑐 𝑘 ( 𝑥 − 𝑥 𝐼 , 𝑧 − 𝑧 𝐼 ) = 𝒃 𝑇 
𝑘 
( 𝑥, 𝑧 ) 𝒑 𝑘 ( 𝑥 − 𝑥 𝐼 , 𝑧 − 𝑧 𝐼 ) (18) 

The coefficient matrix is 

𝒃 𝑘 ( 𝑥, 𝑧 ) = [ 𝑏 1 ( 𝑥, 𝑧 ) 𝑏 2 ( 𝑥, 𝑧 ) ⋯ 𝑏 6 ( 𝑥, 𝑧 ) ] 𝑇 (19) 

where b k ( x,z )can be obtained from the conditions of the reproducing 
kernel approximation. 

The polynomial basis function is 

𝒑 𝑇 
𝑘 
( 𝑥 − 𝑥 𝐼 , 𝑧 − 𝑧 𝐼 ) = [ 1 , 𝑥 − 𝑥 𝐼 , 𝑧 − 𝑧 𝐼 , ( 𝑥 − 𝑥 𝐼 ) 2 , ( 𝑥 − 𝑥 𝐼 )( 𝑧 − 𝑧 𝐼 ) , ( 𝑧 − 𝑧 𝐼 ) 2 ] 

(20) 

In Eq. (17) , r k = d k / d mk , 𝑑 𝑘 = 

√ 

( 𝑥 − 𝑥 𝑘 ) 2 + ( 𝑧 − 𝑧 𝑘 ) 2 , d mk is the radius 
of the supporting domain defined by the reproducing kernel function at 
node ( x k ,z k ). 

In order to analyze the influence of the kernel function w ( r k ) on cal- 
culating accuracy, the kernel function w ( r k ) is taken in the following 
two forms as 

𝑤 1 ( 𝑟 𝑘 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
2∕3 − 4 𝑟 𝑘 2 + 4 𝑟 𝑘 3 𝑟 𝑘 ≤ 1∕2 
4∕3 − 4 𝑟 𝑘 + 4 𝑟 𝑘 2 − 4 𝑟 𝑘 3 ∕3 1∕2 < 𝑟 𝑘 ≤ 1 
0 𝑟 𝑘 > 1 

(21) 

𝑤 2 ( 𝑟 𝑘 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 
1 − 2 𝑟 2 𝑟 𝑘 ≤ 1∕2 
2 (1 − 𝑟 ) 2 1∕2 < 𝑟 𝑘 ≤ 1 
0 𝑟 𝑘 > 1 

(22) 

Eq. (15) can be written in the matrix form as 

𝑤 

ℎ ( 𝑥, 𝑧 ) = 𝑩 

𝑇 𝒂 0 (23) 

where B is the basis function vector, and can be given as 

𝑩 

𝑇 = [ 𝑅 1 𝑅 2 ⋯ 𝑅 𝑛 𝑅 

𝑘 
1 ( 𝑥, 𝑧 ) 𝑅 

𝑘 
2 ( 𝑥, 𝑧 ) ⋯ 𝑅 

𝑘 
𝑛 𝑚 
( 𝑥, 𝑧 )] (24) 

The coefficient vector a 0 can be expressed as 

𝒂 𝑇 0 = { 𝑎 1 𝑎 2 ⋯ 𝑎 𝑛 𝑐 1 𝑐 2 ⋯ 𝑐 𝑛 𝑚 
} (25) 

In Eq. (15) , the coefficients a i and c k can be determined by the func- 
tion values of all nodes in the supporting domain. 

The function values for all nodes in the supporting domain can be 
deduced 

𝑤 ( 𝑥 𝑙 , 𝑧 𝑙 ) = 

𝑛 ∑
𝑘 =1 

𝑅 𝑘 ( 𝑥 𝑙 , 𝑧 𝑙 ) 𝑐 𝑘 + 

𝑛 𝑚 ∑
𝑖 =1 

𝑅 

𝑚 
𝑖 
( 𝑥 𝑙 , 𝑧 𝑙 ) 𝑎 𝑖 (26) 
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