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a b s t r a c t 

In this paper, the meshless local boundary integral equation (LBIE) method is implemented for the solution of 

convected wave equation in frequency domain. Such a problem plays an important role for the noise prediction 

in flow acoustics. The case of a uniform flow in x -direction is analyzed. For the resultant convected Helmholtz 

equation, the free-space Green’s function has a more complicated form than the Green’s function for the classical 

Helmholtz equation, though it reduces to the latter when a coordinate (Prandtl–Glauert) transformation is applied. 

Furthermore, the LBIE method requires the determination of the solution of the corresponding Dirichlet’s problem 

in local subdomains (companion solution). Therefore, the relevant companion solution is derived. Radial basis 

functions are used for the interpolations of the field variable. Numerical examples are shown for cases up to 

frequency of 5000 Hz and Mach number of 0.5, and the results are compared with FEM software (COMSOL). 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The solution of the convected wave equation is an important task 

in many aeroacoustics applications, such as the prediction of rocket 

noise [1] , the use of acoustic metamaterials [2] , turbofan aircraft en- 

gine [3] and compressor noise [4,5] . Several numerical methods have 

been developed in the literature for the solution of the convected wave 

equation. In [6, 7] , the stability and accuracy of the finite element meth- 

ods (FEM) was investigated by means of the dispersion error for 1D 

and 2D problems. Adapted spectral FEM [8] , subgrid scale FEM [4] and 

high-order FEM [9] versions have been also implemented previously. 

As mentioned in [6,7,8] , the numerical methods suffer from errors be- 

cause of the spurious modes that appear, the dispersion error, and the 

different wavenumbers of the outgoing and incoming waves. 

Regarding boundary element methods (BEM), the direct boundary 

integral formulation and the expression for the free space Green’s func- 

tion was presented by Wu and Lee [10] . Lee and Lee [11] have shown the 

derivation and the implementation of the direct BEM in time domain. 

In Ref. [12] , the formulations in [10] were extended to 3D dimensional 

problems with non-uniform flow, where the non-uniform contributions 

in the domain were handled using the dual-reciprocity method. Coupled 

FEM-BEM approach can be also implemented as in Balin et al. [13] , 

where the calculations in the potential flow zone are performed with 

the FEM and the uniform flow zone is solved via BEM. 

The local boundary integral equation (LBIE) method is a well- 

established meshless numerical approach which has been previously 

used for the solution of potential, electromagnetic, diffusion, elasticity, 
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and wave problems [14,15] . It has a similar foundation as the domain- 

decomposition based, multi-domain BEM (MD-BEM) [16] . However, 

in contrast to the latter, the subdomains in the LBIE may be overlap- 

ping. Furthermore, note that the full-matching boundary conditions at 

the subdomain boundaries are implemented in the MD-BEM, whereas 

boundary and domain integrals are computed for the overlapping sub- 

domains in the LBIE, and the unknown variables at the quadrature inte- 

gration points are interpolated from the neighboring source nodes with 

the use of Radial Basis Functions (RBFs) or the use of Moving Least 

Squares. Chen et al. [17] has shown that, when solving the Helmholtz 

equation with the LBIE method, the use of frequency-dependent func- 

tions in the interpolations provides more accurate results than the usual 

polynomial based functions. The dispersion error of the LBIE for a 2D 

Helmholtz problem was also investigated by Dogan et al. [18] ; it has 

been found that its accuracy is comparable to the classical FEM with 

linear elements. 

In the present paper, the implementation of the LBIE method for the 

convected wave equation is shown for the case of 1D uniform flow. The 

frequency domain convected wave equation in Ref. [10] is taken as the 

basis. A crucial step for the local BEM is the derivation of the compan- 

ion solution in order to eliminate the derivative of the velocity potential 

from the formulations; this has been accomplished. Moreover, the vari- 

ables are expressed in the physical space rather than the transformed 

space. No transformation is required for the boundary conditions, un- 

like the methods based on transformed formulations [13] . The estab- 

lishment of such a method is an important step toward the solution of 

the acoustic propagation in three dimensional complex flows. Because 
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the integral equation is written for sufficiently small subdomains and 

the free space Green’s function is applied locally in the present method, 

the formulations can be easily extended to 3D and non-uniform cases. 

Although volume based methods such as FEM and finite differ- 

ence scheme are able to solve wave propagation in a non-uniform 

medium, fewer research has been devoted to the convected wave prop- 

agation with non-uniform Mach number distribution using the BEM 

[19] . As discussed recently by Mancini et al. [19] , the existing works 

[12,19,20,21] have treated the problem with global boundary integral 

equations; they have provided only approximate solutions or applied 

dual reciprocity technique, the latter of which suffers from the defini- 

tion of robust interpolation functions. Appropriate integral kernels for 

non-uniform case are yet to be derived for the BEM, since the free space 

Green’s function as used in the direct boundary integral formulation 

cannot handle the non-uniformities in the domain. The technique of de- 

composing the Mach number into a uniform component and small devi- 

ations has been employed, though the results deteriorate with increasing 

frequency and mean flow Mach number [19,20] . These features show 

a potential for the analysis of the problem with local integral equations 

and/or meshless methods. As such, the LBIE method presented has no 

such restrictions. The formulations are valid for all parameter ranges 

with Mach number M < 1. Hence, the strongly non-uniform effects ob- 

served in the flow calculations can be inserted into the acoustic compu- 

tations. The RBF interpolation matrix is already constructed in the LBIE 

for each subdomain for the interpolations of the field variable (e.g. the 

velocity potential). Therefore, the interpolations of the Mach number in 

case of a non-uniform flow would not bring in any additional cost in 

terms of computational time and global error of the method. 

2. Formulations 

Let us consider the frequency domain acoustic wave equation in a 

steady uniform flow 

∇ 

2 Φ( 𝒙 ) + 𝑘 2 Φ( 𝒙 ) − 2 𝑖𝑘𝑀 

𝜕Φ( 𝒙 ) 
𝜕𝑥 

− 𝑀 

2 𝜕 
2 Φ( 𝒙 ) 
𝜕 𝑥 2 

= 0 , 𝒙 ∈ 𝑉 , (1) 

where Φ is the velocity potential, k is the wavenumber, M is the Mach 

number of the uniform flow in the positive x direction, and 𝑖 = 

√
−1 . 

The domain V is enclosed by Γ= Γu ∪Γq with the boundary conditions 

Φ( 𝒙 ) = Φ0 , on Γu , (2a) 

𝜕Φ( 𝒙 ) 
𝜕𝑛 

≡ 𝑞 = 𝑞 0 , on Γq , (2b) 

where Φ0 is the prescribed velocity potential on the essential boundary 

Γu , q 0 is the prescribed potential flux on the boundary Γq , and n is the 

outward normal vector on Γ. 

The Green’s function of the adjoint operator of Eq. (1) was derived 

in Ref. [10] , and is given by 

𝐺 ( 𝒙 ) = 

𝑒 
− 𝑖𝑘 

√
𝑥 2 + ( 1− 𝑀 

2 ) ( 𝑦 2 + 𝑧 2 ) + 𝑀𝑥 

1− 𝑀 

2 

4 𝜋
√ 

𝑥 2 + 

(
1 − 𝑀 

2 
)(
𝑦 2 + 𝑧 2 

) . (3) 

A weak formulation of the problem may be formed using the test 

function G such that 

∫𝑉 

𝐺 

( 

∇ 

2 Φ + 𝑘 2 Φ − 2 𝑖𝑘𝑀 

𝜕Φ
𝜕𝑥 

− 𝑀 

2 𝜕 
2 Φ
𝜕 𝑥 2 

) 

𝑑𝑉 = 0 , (4) 

which yields the integral equation representation: 

𝜆Φ( 𝑃 ) = ∫Γ
[(

𝐺 

𝜕Φ
𝜕𝑛 

− Φ 𝜕𝐺 

𝜕𝑛 

)
− 2 𝑖𝑘𝑀𝐺Φ𝑛 𝑥 − 𝑀 

2 
(
𝐺 

𝜕Φ
𝜕𝑥 

− Φ 𝜕𝐺 

𝜕𝑥 

)
𝑛 𝑥 

]
𝑑Γ, 

(5) 

where n x is the x component of the unit normal vector n . 
In the LBIE, a set of ( N ) source nodes are distributed in the domain 

and on the boundary Γ. Spherical subdomains are generated, such that 

Ω ∈ V . The surface (boundary) enclosing each interior subdomain is 
defined as ΩS = 𝜕Ω (see Fig. 1 ). When the source node lies on the global 
boundary, the subdomain is not a full sphere anymore; it takes the shape 
of a slice of a sphere the azimuthal and polar angle bounds of which need 
to be determined. For such a case, 𝜕Ω= Ωb ∪ΩS , where Ωb ∈ Γ and ΩS 
∈ V . The integral Eq. (5) must hold then for all subdomains. Assuming 
that the collocation point P is located at the center of the subdomain, 
we write 

𝜆( 𝑃 ) Φ( 𝑃 ) = ∫𝜕Ω

[(
𝐺 

𝜕Φ
𝜕𝑛 

− Φ 𝜕𝐺 

𝜕𝑛 

)
− 2 𝑖𝑘𝑀𝐺Φ𝑛 𝑥 − 𝑀 

2 
(
𝐺 

𝜕Φ
𝜕𝑥 

− Φ 𝜕𝐺 

𝜕𝑥 

)
𝑛 𝑥 

]
𝑑 ΩS . 

(6) 

where 

𝜆( 𝑃 ) = ∫𝜕Ω

[ 
𝜕 𝐺 0 
𝜕𝑛 

− 𝑀 

2 𝜕 𝐺 0 
𝜕𝑥 

𝑛 𝑥 

] 
𝑑 ΩS , (7) 

with 𝐺 0 ( 𝒙 ) = 1∕4 𝜋
√
𝑥 2 + ( 1 − 𝑀 

2 )( 𝑦 2 + 𝑧 2 ) . 
Eq. (7) is still not adequate to be implemented because the term 

𝜕 Φ/ 𝜕 n is unknown on all of the boundaries of the subdomains. In the 

classical BEM, it would be known on some part of the global boundary 

(e.g. Neumann condition), and would be solved for on the rest of the 

global boundary where it is unknown. In meshless methods, one way to 

handle the unknown 𝜕 Φ/ 𝜕 n on the subdomain boundaries is to express 

it in terms of spatial derivatives 𝜕 Φ/ 𝜕 x , 𝜕 Φ/ 𝜕 y and 𝜕 Φ/ 𝜕 z . By doing 

so, four equations for each subdomain would be formulated for a 3D 

problem, and the resultant system matrix would have a size of 4 N ×4 N 

(in a domain with N source nodes). In fact, in Ref. [22] such a method 

was developed for the solution of the Helmholtz equation. 

We will proceed instead with one of the main features of the LBIE 

method, i.e. the elimination of the term 𝜕 Φ/ 𝜕 n from the equations by 

using the companion solution technique. For instance, the companion 

solution within the frame of LBIE was applied for the solution of the 

Laplace problem in Ref. [14] , and for the solution of the Helmholtz prob- 

lem in Refs. [15,18,23] . For the convected wave equation, the compan- 

ion solution needs to be formulated, which will be done in the following 

sections. 

2.1. Transformed domain variables 

In Ref. [10] , the Prandtl–Glauert transformation for the acoustic ra- 

diation in a subsonic uniform flow was introduced, which is required 

in the conventional boundary integral formulation. Although it will be 

used for limited purposes in the present paper, it is beneficial to intro- 

duce such a transformation and to list the expressions in the transformed 

domain. For the spatial coordinates, 

𝑥̃ = 𝑥 ∕ 
√
1 − 𝑀 

2 , 𝑦̃ = 𝑦, 𝑧̃ = 𝑧, (8) 

hence 

𝑟 = 𝑟 M 

∕ 
√
1 − 𝑀 

2 . (9) 

The wavenumber in the transformed domain is defined as 𝑘̃ = 

𝑘 
√
1 − 𝑀 

2 , though an additional variable that is proportional to the 

wavenumber is also used, e.g. 𝜅 = 𝑘𝑀∕ 
√
1 − 𝑀 

2 . The velocity poten- 

tial can be transformed by imposing Φ̃ = Φ 𝑒 − 𝑖𝜅𝑥̃ . Then, Eq. (1) reduces 

to the Helmholtz equation in the transformed domain (see [10] for de- 

tails). Furthermore, the Green’s function in the transformed domain is 

given by 

𝐺̃ = 𝐺 𝑒 𝑖𝜅𝑥̃ = 

1 √
1 − 𝑀 

2 

𝑒 − 𝑖 ̃𝑘 ̃𝑟 

4 𝜋𝑟 
. (10) 

2.2. The companion solution 

The aim of the companion solution is to introduce a function the 

value of which is equal to the Green’s function on the boundary of the 

subdomain [24] . Such a choice aids the use of a test function in the form 

( G − G 

∗ ) in the weighted residual integral (4) , which then provides the 

2 
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