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a b s t r a c t 

A new regularized fundamental solution to the Stokes equation in 2-D notation was derived using the new cut- 

off (blob) function. It substitutes the delta-Dirac function, which represents source term in a classical form of 

the equation expressed with the Green’s functions. The proposed cut-off function/blob selection led to a much 

simpler and, therefore, faster fundamental solution in terms of elapsed computational time. Thus, it was possible 

to find boundary values and solve the linear system of the Stokes equations in 114 s applying backslash solver 

in Matlab 2013 on a quad-core 2.8 GHz each and 8RAM processor machine. This computation time appeared to 

become approximately 2.5 times less than the time required to run the same code with the known regularized 

fundamental solution to the 2-D steady-state Stokes equations. 

Validation of the proposed solution was performed using well-known problems of the Stokes flow in a lid- 

driven cavity, as well as in a 2-D rectangular channel with semi-circular and parabolic protrusions used by 

Gaver, Kute and Cortez. The solutions for the normal and shear stresses, velocity magnitude and streamlines were 

obtained and compared to the corresponding solutions of Gaver, Kute, Cortez and the finite-volume method. 

1. Introduction 

In the last decade, the boundary element methods (BEM) have be- 
come more noticeable for modeling and numerical simulations along 
with the fast development of the microfluidics. Designing of the labs-on- 
chip, fine mixing devices, microchannel heat exchangers, fibrous filtra- 
tion and particulate flows are just a few examples of the contemporary 
physics where BEM application is possible. 

The “lab-on-a-chip ” devices employing electrophoretic effects and 
microfluidics are very popular in experimental biomechanics [1] and 
pharmaceutics [2,3] . Because of the demand for extreme reliability of 
such devices, proper modeling and numerical simulations to predict 
physical effects mentioned above need to be performed. The commer- 
cial software based on finite element (FEM) and finite volume (FVM) 
methods can be numerically expensive in terms of meshing and solving 
systems of equations for entire domains. The boundary element meth- 
ods can be helpful since they only require conditions set at a boundary 
of a considered domain for steady-state problems. Thus, BEM are more 
advantageous for a certain class of problems in microfluidics. 

For example, in [4] Chowdhury et al. discuss application of the BEM 

to analyze electromagnetic and fluid-flow systems. They applied BEM 

to predict traction forces exerted at the droplet surface as well as to 
evaluate the flow field and traction forces inside an arbitrary channel. 

The BEM discussed in the present paper and applied to the solution 
of the Stokes flow problems is the Boundary Singularity Method (BSM) 
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[5–7] , which can also be referred to as the Method of Fundamental So- 
lutions (MFS). BSM requires allocation of source points (or Stokeslets) 
at the boundaries of a considered domain. Another set of points match- 
ing the number of Stokeslets – collocation points – is located inside the 
domain. In addition, a 1-D vector of boundary conditions C required to 
calculate boundary values or so-called Stokeslet strengths is used. 

However, despite the advantages of the BEM applied to the micro- 
and nano-scale fluid flow problems, there are well-known singularity 
effects and the solution divergence issues at a considered boundary [5] . 
This is due to the nature of the Poisson’s equation fundamental solu- 
tion where external forces at a boundary induced by the flow are rep- 
resented with the singular delta-Dirac function. These equations ( 1 ) are 
conveniently solved using the Boundary Element Methods and apply- 
ing specific Stokeslets ’ placement [5–7] and regularization techniques 
[8,9] that have been implemented to avoid singular solutions at the 
boundaries [5–10] for the fluid dynamics problems satisfying Re < 1 
condition. 

The Stokes equation in the form of a Green’s function solution can 
be written as: 

∇ 

2 𝐺 ( 𝑟 − 𝜉) − 𝑔 𝑟𝑎𝑑 ( 𝑃 ) = 𝛿( 𝑟 − 𝜉) , (1.1) 

where G is a Green’s function, P is a pressure solution, r and 𝜉 are coor- 
dinate vectors in 2-D polar coordinate system associated with the source 
points (Stokeslets) and collocation points respectively. It is easy to no- 
tice that the right-hand side of Eq. (1.1) has a singularity at | r − 𝜉|. The 
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delta-Dirac function 𝛿( r − 𝜉) →∞ as | r − 𝜉| →0, which corresponds to the 
boundary of a considered flow domain. In order to avoid singularity at 
the boundaries and suppress solution oscillations, a regularization tech- 
nique was developed and introduced by Cortez et al. in [8–10] . As the 
result, Eq. (1.1) was in fact replaced by the following one: 

∇ 

2 𝐺 𝜖( 𝑟 − 𝜉) − 𝑔𝑟𝑎𝑑 
(
𝑃 𝜖
)
= 𝜙𝜖( 𝑟 − 𝜉) , (1.2) 

where G 𝜀 and P 𝜀 are the regularized equivalents of a Green’s function 
and a pressure solution, respectively. The regularization of the govern- 
ing equation above is introduced with a so-called blob or cut-off function 
𝜙𝜀 ( r − 𝜉). The selection criterion is discussed in [10] , where a few exam- 
ples of blobs and cut-off functions are introduced for both 2-D and 3-D 

notations. 
The present paper is constructed as follows: Section 2 provides with 

the description of the alternative cut-off function, as well as with a def- 
inition of the modified radius-vector containing regularization param- 
eter to avoid singularity effects at boundaries. The cut-off function is 
then introduced in the Green’s function solution formulation. 

Section 3 is dedicated to the validation of the proposed solution with 
three well-known Stokes flow problems. The first problem describes the 
Stokes flow in a 2-D rectangular channel with semi-circular protrusion. 
The solution of the problem represents normal and shear stress compo- 
nents distribution along the lower channel surface with the protrusion, 
as well as the velocity magnitude contours and the streamlines. The 
regularized fundamental solutions for the stress components have been 
compared to those obtained by Cortez in [10] and with the Gaver–Kute 
solution in [14] for the same problem. The second validation problem 

is a modification of the first one, where semi-circular protrusion is re- 
placed with a parabolic obstacle. It is formulated as the Stokes flow over 
a parabolic obstacle inside a square domain, similarly to the problem in 
Chapter VIII of the [15] . The validation case represents a well-known 
problem of a Stokes flow in a lid-driven cavity [11–13] . In the last two 
cases, the proposed numerical solution results are compared to the ones 
obtained with the regularized Stokeslet presented in [10] . 

Finally, Section 4 concludes the paper and introduces the results of 
the comparison of the elapsed time to solve the matrix Eq. (1.3) for the 
proposed regularized solution with the one presented in [10] for 2-D 

class of Stokes flow problems: 

𝐹 = 𝐶∖ 𝑀, (1.3) 

where F is a vector of Stokeslets ’ strength components, which is used 
to derive velocity and pressure solution components, C is a vector of 
velocity boundary conditions having 3 N elements and M is a 3 N × 3 N 

computational matrix consisting of paired distances between Stokeslets 
and collocation points at the boundary using Einstein summation 
[5–7] . Here, N is the number of singularities (Stokeslets) that are placed 
over a considered domain. The resulting solution vector is represented 
as follows: 

𝑈 = 𝐶 − 𝑀 𝑢 𝐹 , 𝑃 = 𝑀 𝑝 𝐹 (1.4) 

where U is the velocity vector having the same dimension as C . The 
velocity and pressure solution components are introduced in the next 
Section. 

2. Derivation of the regularized fundamental solution 

In the present section, a cut-off function/blob, which is different from 

the one presented in [10] . A new cut-off function is aimed at simplifica- 
tion of the resulting regularized fundamental solution of the 2-D Stokes 
equation. 

It is worthwhile introducing a so-called modified radius-vector ϱ, 
which incorporates regularization parameter 𝜀 : 

𝜚 = 

√ |𝑟 |2 + 𝜖2 + 𝜖, (2.3) 

where r is a radius-vector between Stokeslets and collocation points. 

Fig. 2.1. Cut-off function distribution for 𝜀 = 0.816: a) Cortez blob as per 

[10] and b) introduced blob. 

The following cut-off function was selected in order to find corre- 
sponding Green’s function solution kernel for the regularized 2-D Stokes 
equation fundamental solution: 

𝜙𝜖( 𝑟 ) = 

𝜖

2 𝜋
(
𝑟 2 + 𝜖2 

) 3 
2 

. (2.4) 

The specified blob or cut-off function is presented and compared to 
the one introduced in [10] by Cortez for 2-D Stokes equation is presented 
in Fig. 2.1 . 

To check the validity of the selected function to the one introduced 
in [10] , we integrate each of them over r in semi-infinite domain: 

∫Ω 𝜙𝜖( 𝑟 ) 𝑑𝑟 = 

∞∫
0 ∫

𝜋

0 

𝑟𝜖

2 𝜋
(
𝑟 2 + 𝜖2 

) 3 
2 

𝑑𝑟 = ∫Ω 𝜙[ 6 ] 
𝜖
( 𝑟 ) 𝑑𝑟𝑑𝑟 

= 𝜋𝜖 ∫
∞

0 

3 𝑟 𝜖3 

2 𝜋
(
𝑟 2 + 𝜖2 

) 5 
2 

= 1 , (2.5) 

where 𝜙[ 10 ] 
𝜖 ( 𝑟 ) is a cut-off function or blob presented by Cortez in [10] : 

𝜙[ 10 ] 
𝜖

( 𝑟 ) = 

3 𝜖3 

2 𝜋
(
𝑟 2 + 𝜖2 

) 5 
2 

. (2.6) 

According to the continuity equation, the divergence of the velocity 
equals to 0, therefore: 

𝑑 𝑖𝑣 
(
𝑔𝑟𝑎𝑑 

(
𝑃 𝜖( 𝑟 − 𝜉) 

))
= Δ𝑃 𝜖( 𝑟 − 𝜉) = ∇ ⋅ 𝜙𝜖( 𝑟 − 𝜉) . (2.7) 

The corresponding regularized Green’s function can be found from 

the homogeneous equation solution, which yields: 

∇ 

2 𝐺 𝜖 = 𝜙𝜖( 𝑟 − 𝜉) , (2.8) 

which by taking the Laplacian in 2-D cylindrical coordinates for radially- 
symmetrical functions, gives: 

1 
𝑟 

[
𝑟𝐺 

′
𝜖

]′ = 

𝜖

2 𝜋
(|𝑟 |2 + 𝜖2 

) 3 
2 

. (2.9) 

The solution of the above equation results in the following Green’s 
function solution kernel: 

𝐺 𝜖( 𝑟 ) = 

1 
2 𝜋

ln 
( √ |𝑟 |2 + 𝜖2 + 𝜖

) 

, (2.10) 

Now, introducing the expression for modified radius-vector, we ob- 
tain: 

𝐺 𝜖( 𝜚 ) = 

1 
2 𝜋

ln 𝜚. (2.11) 
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