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a b s t r a c t 

Radial basis functions based finite difference schemes for the solution of partial differential equations have the 

advantage that an optimal choice of the shape parameter can yield better accuracies than standard finite dif- 

ference discretisations based on the same number of nodal points. Such schemes known as local radial basis 

functions methods are considered for the pricing of options under the constant elasticity of variance and the Hes- 

ton stochastic volatility model. A general methodology for approximating first and second order derivative terms 

in the finance pdes is presented and the resulting schemes are applied for option valuation. For one-dimensional 

problems, we derive a compact-RBF scheme which achieves a higher order accuracy when combined with a local 

mesh refinement strategy. Numerical results and comparisons made for European, American and barrier options 

illustrate the good performances of the localized radial basis functions methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The numerical solution of partial differential equations arising in 

various application areas using radial basis functions (RBFs) interpola- 

tion has now gained much popularity. An RBF scheme for option pricing 

was introduced by Hon and Mao [1] and subsequently, several compu- 

tational procedures based on RBFs have been used as an alternative to 

finite difference techniques for the valuation of financial derivatives. 

Under the dynamics of the underlying asset described by the Black–

Scholes model, pricing using RBFs have been developed in [2–5] and 

under jump-diffusion models, RBF-based numerical pricing methodolo- 

gies have been proposed in [6–9] . RBFs have also been employed for 

the solution of multi-asset option pricing in [10,11] and for problems 

with stochastic volatility in [12] . 

The methods mentioned above have all employed global RBFs where 

the differential quadrature of the derivative terms in the pricing pde 

is based on all the nodes inside the computational domain. Such RBFs 

yield spectral accuracy for smooth enough problems. However, there is 

a trade-off between the accuracy of the RBF collocation and the condi- 

tioning of the RBF matrix in the sense that higher accuracy comes at 

the price of a large condition number. Moreover the payoffs of most fi- 

nancial derivatives have limited continuity such that global RBF are not 

appropriate since dense linear systems have to be solved and spectral 

accuracy is not attained. 
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In order to avoid numerical instabilities associated with the inversion 

of full matrices in global RBF methods, there is increasing interest in the 

use of local RBF methods in which, similar to finite difference methods, 

the derivatives in the pde are approximated by linear combinations of 

local solution values. The weights in the differential quadrature are de- 

termined by requiring that the derivative be exact for the set of radial 

basis functions whose centres are the nodes constituting the local sten- 

cil. The local method termed as RBF-FD leads to sparse system matrices 

and savings in computational times. 

Numerical methods based on RBF-FD for the valuation of financial 

contracts have been considered in [4,13,14] . The pricing of Asian op- 

tions under the Black–Scholes model [15] using RBF-FD schemes and 

the influence of the shape parameter on price accuracy has been stud- 

ied in [4] . Evaluation of the performances of local and global methods 

for multi-asset option pricing models and various time stepping strate- 

gies is described in [14] and it was shown that the RBF-FD matrices are 

well-conditioned and numerical solutions have sufficient accuracy. 

Recent work have mostly focused on option pricing when the under- 

lying asset has a log-normal diffusion. This work extends the localized 

RBF method to the constant elasticity of variance and stochastic volatil- 

ity models. For the CEV process, a compact-RBF-FD method combined 

with a local mesh refinement strategy [16] is shown to yield a fourth- 

order accuracy. 

Based on the procedure described in [17] , a general methodology 

for approximating the weights in local RBF differential quadrature of 
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the first and second derivatives are derived. These are used to develop 

numerical schemes for pricing options and the dependence of the root 

mean square error on the ratio of the shape parameter to nodal distance 

is studied. 

This paper is structured as follows. In Section 2 , the pricing prob- 

lems in one and two dimensions are described and in Section 3 , RBF-FD 

approximations for the spatial derivative terms for the one-dimensional 

problem are described. An improved fourth-order compact RBF scheme 

is presented in Section 4 . The methods for the 3-point RBF-FD approx- 

imation for the one-dimensional problem are then generalized for the 

Heston model in Section 5 . Time integration schemes for the systems of 

ordinary differential equations arising in the different pricing problems 

are described in Section 6 . An extensive set of numerical tests are given 

in Section 7 in order to illustrate the good performances of the local RBF 

approach and our conclusions are presented in Section 8 . 

2. Option pricing models 

Consider a European option on a risky asset whose payoff at matu- 

rity date T is a function of the asset price S which follows the diffusion 

process given by 

𝑑 𝑆 𝑡 = 𝜇𝑆 𝑡 𝑑 𝑡 + 𝜎
(
𝑆 𝑡 

)
𝑆 𝑡 𝑑𝑊 𝑡 , 𝑡 ≥ 0 , 𝑆 ≥ 0 . (1) 

The constant 𝜇 = 𝑟 − 𝑞 is the drift rate of the process with r being the 

risk-free interest rate and q , the dividend yield. For the constant volatil- 

ity Black–Scholes model, 𝜎( 𝑆) = 𝜎 and the case 𝜎( 𝑆 𝑡 ) = 𝜎cev 𝑆 

𝛽−1 
𝑡 

cor- 

responds to the constant elasticity of variance (CEV) model where 𝛽

is known as the elasticity factor. The initial instantaneous volatility at 

time 𝑡 = 0 is given by 𝜎0 = 𝜎( 𝑆 0 ) = 𝜎cev 𝑆 

𝛽−1 
0 . The case 𝛽 = 1 corresponds 

to the Black–Scholes model. 

Let 𝜏 = 𝑇 − 𝑡 denote the time to maturity of the option. Then letting 

𝑎 ( 𝑆 ) = 

1 
2 𝜎

2 ( 𝑆 ) 𝑆 

2 and 𝑏 ( 𝑆 ) = 𝜇𝑆 , the price V ( S , 𝜏) of the option under the 

scalar diffusion (1) solves the equation 

𝑉 𝜏 = 𝑎 ( 𝑆 ) 𝑉 𝑆𝑆 + 𝑏 ( 𝑆 ) 𝑉 𝑆 − 𝑟𝑉 , 𝑆 ≥ 0 , 0 ≤ 𝜏 ≤ 𝑇 . (2) 

For a European put option with strike price E , the payoff is 𝐺( 𝑆) = 

max ( 𝐸 − 𝑆, 0 ) . Thus we need to solve (2) with initial condition 

𝑉 ( 𝑆, 0) = 𝐺( 𝑆) and boundary conditions given by 𝑉 (0 , 𝜏) = 𝐸𝑒 − 𝑟𝜏 and 

lim 

𝑆→∞
𝑉 ( 𝑆 , 𝜏) = 0 . 

The price V ( S , t ) of an American put with maturity date T satisfies 

V ( S , t ) ≥ G ( S ). Then denoting the differential operator by 

 𝑉 = 𝑎 ( 𝑆 ) 𝑉 𝑆𝑆 + 𝑏 ( 𝑆 ) 𝑉 𝑆 − 𝑟𝑉 , 

the American put price 𝑉 = 𝑉 ( 𝑆 , 𝜏) solves the linear complementarity 

problem 

𝜕𝑉 

𝜕𝜏
≥  𝑉 , 𝑆 ≥ 0 , 0 ≤ 𝜏 ≤ 𝑇 , (3) 

𝑉 ( 𝑆 , 𝜏) ≥ 𝐺( 𝑆) , 𝑆 ≥ 0 , 0 ≤ 𝜏 ≤ 𝑇 , (
𝜕𝑉 

𝜕𝜏
−  𝑉 

)
⋅ ( 𝑉 ( 𝑆 , 𝜏) − 𝐺( 𝑆) ) = 0 , 𝑆 ≥ 0 , 0 ≤ 𝜏 ≤ 𝑇 , 

𝑉 ( 𝑆, 0) = 𝐺( 𝑆) 

lim 

𝑆→+∞
𝑉 ( 𝑆 , 𝜏) = 0 . 

2.1. Stochastic volatility model 

The Heston model [18] assumes a correlation between the asset price 

S t and the asset price volatility 
√
𝜐𝑡 , where 𝜐𝑡 is the variance process. 

Under this model, the risk-neutral dynamics of the stock price S t is given 

by 

𝑑𝑆 𝑡 = ( 𝑟 − 𝑞 ) 𝑆 𝑡 𝑑𝑡 + 

√
𝜐𝑡 𝑆 𝑡 𝑑𝑊 

(1) 
𝑡 

, (4) 

𝑑𝜐𝑡 = 𝜅
(
𝜃 − 𝜐𝑡 

)
𝑑𝑡 + 𝜎𝜐

√
𝜐𝑡 𝑑𝑊 

(2) 
𝑡 

, 

where the standard Brownian motions 𝑊 

(1) 
𝑡 

and 𝑊 

(2) 
𝑡 

are correlated with 

correlation coefficient 𝜌. The constant 𝜎𝜐 is the volatility of the volatility 

process, 𝜅 is the rate of mean reversion and 𝜃 is the long-run mean of 𝜐𝑡 . 

Let 𝑎̂ ( 𝑆, 𝜐) = 𝜐𝑆 

2 ∕2 , 𝑏̂ ( 𝑆, 𝜐) = 𝜌𝜎𝜐𝜐𝑆, 𝑐 ( 𝜐) = 𝜎2 
𝜐
𝜐∕2 , 𝑑 ( 𝑆) = ( 𝑟 − 𝑞) 𝑆

and 𝑒 ( 𝜐) = ( 𝜅( 𝜃 − 𝜐) − 𝜆𝜐𝜎𝜐
√
𝜐) , where 𝜆𝜐 denotes the market price of 

volatility risk. Under the stochastic volatility model given by (4) , the 

price 𝑉 ( 𝑆, 𝜐, 𝜏) of a European put option with strike E is the solution of 

the pde 

𝜕 ̄𝑉 ( 𝑆, 𝜐, 𝜏) 
𝜕𝜏

=  𝐻 

𝑉 ( 𝑆, 𝜐, 𝜏) , 𝑆 ≥ 0 , 𝜐 ≥ 0 , 0 ≤ 𝜏 ≤ 𝑇 , (5) 

with the differential operator  𝐻 

given by 

 𝐻 

𝑉 = 𝑎̂ ( 𝑆, 𝜐) 𝜕 
2 𝑉 

𝜕𝑆 

2 + ̂𝑏 ( 𝑆, 𝜐) 𝜕 
2 𝑉 

𝜕 𝑆𝜕 𝜐
+ 𝑐 ( 𝜐) 𝜕 

2 𝑉 

𝜕𝜐2 
+ 𝑑 ( 𝑆 ) 𝜕 ̄𝑉 

𝜕𝑆 

+ 𝑒 ( 𝜐) 𝜕 ̄𝑉 
𝜕𝜐

− 𝑟 ̄𝑉 . 

The initial condition is given by 

𝑉 ( 𝑆, 𝜐, 0 ) = 𝐺 𝐻 

( 𝑆, 𝜐) , (6) 

where 𝐺 𝐻 

( 𝑆, 𝜐) = max ( 𝐸 − 𝑆, 0 ) . Different boundary conditions that 

have been used in the literature for the pde (5) can be found in [19] . 

On the plane 𝑆 = 0 , we have 

𝑉 ( 0 , 𝜐, 𝜏) = 𝐸𝑒 − 𝑟𝜏 , (7) 

and the far-field boundary conditions are 

lim 

𝑆→∞
𝜕 ̄𝑉 

𝜕𝑆 

= 0 , lim 

𝑆→∞
𝜕 ̄𝑉 

𝜕𝜐
= 0 . (8) 

A discussion on boundary conditions for the case 𝜐 = 0 can be found 

in [20] where it is argued that 𝑉 ( 𝑆, 0 , 𝑡 ) = 0 regardless of the ratio 

2 𝜅𝜃𝜐∕ 𝜎2 𝜐 . In [21] , the boundary condition on 𝜐 = 0 is prescribed by the 

requirement that the option price 𝑉 is the solution of the pde 

𝜕 ̄𝑉 

𝜕𝜏
=  0 𝑉 , 𝑆 ≥ 0 , 0 ≤ 𝜏 ≤ 𝑇 . 

where 

 0 𝑉 = 𝑟𝑆 

𝜕 ̄𝑉 

𝜕𝑆 

+ 𝜅𝜃
𝜕 ̄𝑉 

𝜕𝜐
− 𝑟 ̄𝑉 . 

The value of an American put option requires the solution of the 

linear complementarity problem 

𝜕 ̄𝑉 

𝜕𝜏
≥  𝐻 

𝑉 , 𝑉 ≥ 𝐺 𝐻 

, 

( 

𝜕 ̄𝑉 

𝜕𝜏
−  𝐻 

𝑉 

) 

⋅
(
𝑉 − 𝐺 𝐻 

)
= 0 . (9) 

with initial condition given by (6) , the boundary condition on 𝑆 = 0 
given by (7) and the far-field conditions (8) . On the boundary 𝜐 = 0 , the 

price solves the linear complementarity problem 

𝜕 ̄𝑉 

𝜕𝜏
≥  0 𝑉 , 𝑉 ≥ 𝐺 

0 
𝐻 

, 

( 

𝜕 ̄𝑉 

𝜕𝜏
−  0 𝑉 

) 

⋅
(
𝑉 − 𝐺 

0 
𝐻 

)
= 0 . 

where 𝐺 

0 
𝐻 

( 𝑆) = 𝐺 𝐻 

( 𝑆, 0 , 𝜏) . 
Various approaches have been employed to solve the system of equa- 

tions arising from finite difference approximations of the linear com- 

plementarity problem (9) . The different approaches include a multigrid 

method by Clarke and Parrot [22] , a penalty method by Zvan, Forsyth 

and Vetzal [21] and an operator splitting method by Ikonen and Toiva- 

nen [23] . Requirements on computational resources for the three meth- 

ods are discussed by Zhu and Chen [20] . Ikonen and Toivanen [24] fur- 

ther proposed componentwise splitting methods for solving the linear 

complementarity problem by decomposing the discretized problem into 

three linear complementarity problems with tridiagonal matrices. Effi- 

ciency comparisons carried out by Ikonen and Toivanen [25] indicate 

that a componentwise splitting method is faster than operator split- 

ting and penalty methods. More recent work include a finite element 

method with quadratic basis functions in [26] and a numerical method 

using Gaussian radial basis functions by Ballestra and Pacelli [12] . A 

pseudospectral method for a stochastic volatility model augmented with 

jumps is described by Ballestra and Cecere [27] . 

This work shows that a RBF-FD method for solving the American 

option problem under stochastic volatility produces accurate solutions 

when combined with the operator splitting method of [23] . 
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