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ARTICLE INFO ABSTRACT

JEL classification: We employ the method of fundamental solutions (MFS) for detecting a scatterer surrounding a host acoustic

Primary 65N35 homogeneous medium D due to a given point source inside it. On the boundary of the unknown scatterer (assumed
Secondary 65N21 to be star-shaped), allowing for the normal velocity to be proportional to the excess pressure, a Robin impedance
65N38 boundary condition is considered. The coupling Robin function 4 may or may not be known. The additional
Keywords: information which is supplied in order to compensate for the lack of knowledge of the boundary oD of the

interior scatterer D and/or the function A is given by the measurement of the scattered field (generated by the
interior point source) on a curve inside D. These measurements may be contaminated with noise so their inversion
requires regularization. This is enforced by minimizing a penalised least-squares functional containing various
regularization parameters to be prescribed. In the MFS, the unknown scattered field u® is approximated with a
linear combination of fundamental solutions of the Helmholtz operator with their singularities excluded from the
solution domain D and this yields the discrete version of the objective functional. Physical constraints are added
and the resulting constrained minimization problem is solved using the MATLAB® toolbox routine 1sqnonlin.
Numerical results are presented and discussed.
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1. Introduction — in [21], using a decomposition method based on a variant of the
method of fundamental solutions (MFS), see [4,11], combined with a
simple graphical method based on plotting the zero level set contours
of the total field;

— in [9,10], using the MFS (or the plane waves method (PWM)) com-
bined with a trust region reflective algorithm for minimizing the
nonlinear Tikhonov regularization functional subject to constraints,
implemented using the MATLAB® toolbox routine 1sqnonlin.

Recently, the interior inverse scattering problem initiated in [6] for
testing the structural integrity of a cavity has received some attention
[17,18,21] due to its potential practical importance and pathway to
impact proposed in [17] to model the calculation of the extent of
a homogeneous reservoir from the measured data obtained from a
transmitter-receiver instrument which is lowered through a borehole
into the reservoir.

The numerical reconstruction of a sound-soft, i.e. perfectly conduct- Later on, the linear sampling method and the factorization method

ing scatterer D on whose boundary oD the total field u vanishes, from
measurements on an interior closed curve I' inside D was previously
investigated as follows:

— in [17], using the boundary element method (BEM) based on the
single layer potential representation for the scattered field u* and a
regularized Newton minimization method;

— in [18], using the BEM based on the double layer potential represen-
tation for u® and the linear sampling method;

* Corresponding author.

were employed in [15,19], respectively, to reconstruct a scatterer on
whose boundary a homogeneous Robin boundary condition is satisfied
by the total field. It is the purpose of this paper to extend the MFS
analysis of [9] for the sound-soft scatterer to the more general identi-
fication of a scatterer with a Robin boundary condition which includes
the sound-hard case of a perfectly insulated scatterer when A =0 and
the sound-soft case of a perfectly conducting scatterer when 1 = co.
Moreover, the coupling function 4 between the Dirichlet and Neumann
data in the Robin boundary condition may be known or unknown.
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Therefore, we shall investigate three inverse problems: Problem A in
which D is unknown but 4 is known, problem B in which D is known
but 4 is unknown, and problem C in which both D and A are unknown.

The plan of the paper is as follows. In Section 2, we present the for-
mulations of the direct and inverse problems that are investigated. The
MFS approximation of the scattered field and the numerical realiza-
tion of the constrained nonlinear minimization problem are described
in Section 3. Numerical results are analyzed and discussed in terms of
accuracy and stability in Section 4. In particular, the influence of the
regularization parameters on the stability of the reconstructions of the
scatterer D and/or the Robin function 4 are thoroughly investigated.
Finally, conclusions and possible future work are included in Section 5.

2. Mathematical formulation

We consider the scattering with a wave number 0 < k = @/c, where
¢>0 is the speed of sound and w> 0 is the frequency of a time har-
monic wave, due to a given point source 2, inside the two-dimensional,
bounded and simply-connected scatterer domain D with a sufficiently
smooth, e.g. C2, [19], or Lipschitz, [15], boundary aD. Then the inci-
dent field is given by

U™ (x) = O(x, z0) 1= iH(()”(klx —z]), xeR? @.1

where i is the imaginary unit and H(()l> denotes the Hankel function of
first kind of order zero, and the scattered field u® satisfies the Helmholtz
equation
A+ K =0 in D. (2.2)
Plane wave propagation in a given direction or an incoming cylindrical
wave [13,14], can also be considered instead of the point source wave
(2.1).

On the boundary dD of D we assume that a homogeneous Robin
boundary condition for the total field u = u* + u™™® holds, namely,

ou +idu=0, on 0D, (2.3)
av

where v is the outward unit normal to dD and 0 < A € C(dD) or L*(0D)
is a Robin coupling real function usually called the impedance function,
[15], or admittance, [8]. When 41— 0 or 41— co we obtain the partic-
ular cases of a sound-hard or sound-soft scatterer, respectively. How-
ever, unlike these ideal cases, the Robin impedance boundary condition
(2.3) with 0 < 4 < o0 is more realistic because, in practice, scatterers are
never perfect and the waves always penetrate a little through the bound-
ary oD, with 4 characterising the level of penetration.

Using (2.1) we can recast (2.3) as a non-homogeneous Robin bound-
ary condition for the scattered field given by

s ; X —zy) - v(x)
di(x)JrMuS(x) _ EH“)(klx—zol) %
ov 4 1 [x — z]
+2 HOUx — 2], xeoD 2.4
7 Hy (klx =z, x , .
where H 1(1) is the Hankel function of the first kind of order one.

2.1. The direct problem

When D and 4 are known, equations (2.2) and (2.4) form the direct
problem which is well-posed in C%(D) n C!(D) or H(D), [2,3]. In the
case of the Dirichlet (4 — 0) or Neumann (4 — o) boundary conditions
we need to add the assumption that k? is not a Dirichlet or Neumann
eigenvalue of —A in D, respectively.

2.2. The inverse problems

We consider the following inverse problems under the general as-
sumption that:

(@) k2 is not a Dirichlet eigenvalue for —A in the interior Q of the
curve I introduced below. Note however that this assumption is not so
essential as we can always rescale I', [21].
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2.2.1. Inverse problem A

Solve the Helmholtz equation (2.2) for the scattered field u® subject
to the Robin boundary condition (2.4) with given A but unknown bound-
ary oD which also has to be determined from additional measurements
of u® on some known interior closed curve I" assumed to lie inside D. The
condition that z, €I is not essential but in the sequel we shall assume,
for simplicity, that I is the circle of radius |2,| > O centred at the origin,
ie.

I =0B (). (2.5)
Then the above additional condition is
u$(x) = f(x),

where f is some given measured data which may be contaminated with
noise.

x €T, 2.6)

2.2.2. Inverse problem B

In this case we again consider the Helmholtz equation (2.2) for the
scattered field u® subject to the Robin boundary condition (2.4) but now
the boundary dD is known and the impedance A(x) is unknown. The
additional measurements are again given by (2.6).

2.2.3. Inverse problem C

Now both the boundary oD and the impedance A(x) in (2.4) are un-
known.

At this stage, we briefly discuss the way the data f, obtained from the
measurement of the scattered field I', could be interpreted. We first ob-
serve that the data f in expression (2.6) is rather limited because it only
contains the measurement obtained from a single point source 2z, € D.
Also, (2.6) can be further restricted to a limited aperture case by only
specifying it on a subportion I'; of I. We have also fixed the wave num-
ber k. So, we can remark that in some practical applications it may be
possible to measure more data obtained by varying the wave number
k or the point source z, along I'. Thus, in general, for compatible data
the function f in (2.6) depends on both 2, and k. In particular, for fixed
k satisfying assumption (), but varying 2, €I so that (2.6) reads as a
matrix of measured data

u(x;z0) = f(x;29), x,z9 €T, 2.7)

then a solution of inverse problem C given by (2.2), (2.4) and (2.7) is
unique, [19]. However, this uniqueness result requires the measurement
u®(-; 2¢) for infinitely many point sources 2, €' which may become
impractical. We note that for a single fixed source z, € T’, the uniqueness
of the restricted inverse problem A given by (2.2), (2.4) and (2.6) is
only known when we assume a priori that D is a disk, [15], a small and
smooth perturbation of a disk, [12], or in the sound-soft case (1 — ), by
requiring D to be contained in a disk of radius t,/k, where 7, = 2.40482
is the smallest positive zero of the Bessel function Jj,.

On first solving the direct well-posed Dirichlet problem for the
Helmholtz equation given by (2.2) in Q and (2.6), with assumption («),
the normal derivative

%(x) =:g(x), xeTl, (2.8)

can be obtained. It then means that (2.6) and (2.8) are compatible
Cauchy data for the Helmholtz equation (2.2) in the annular domain
D\Q. From the unique continuation property of the Helmholtz equation
it follows that the Cauchy data u® and 0,u® on oD are uniquely deter-
mined. Then, in principle, provided that u# 0 almost everywhere on dD
the coefficient 4 could be determined directly from (2.3) as

. 0y u(x)

AMx) =1 ——, € oD. (2.9)
u(x)

However, this direct method was found to be less accurate and stable
than a regularized nonlinear least-squares method based on approximat-
ing A with a finite linear combination of trigonometric functions, [19].
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