
ARTICLE IN PRESS 

JID: EABE [m5GeSdc; August 1, 2017;23:7 ] 

Engineering Analysis with Boundary Elements 000 (2017) 1–7 

Contents lists available at ScienceDirect 

Engineering Analysis with Boundary Elements 

journal homepage: www.elsevier.com/locate/enganabound 

The method of fundamental solutions for the identification of a scatterer 

with impedance boundary condition in interior inverse acoustic scattering 

A. Karageorghis a , D. Lesnic b , ∗ , L. Marin 

c , d 

a Department of Mathematics and Statistics, University of Cyprus, P.O.Box 20537, 1678 Nicosia, Cyprus 
b Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK 
c Department of Mathematics, Faculty of Mathematics and Computer Science, University of Bucharest, 14 Academiei, Bucharest 010014, Romania 
d Institute of Mathematical Statistics and Applied Mathematics, Romanian Academy, 13 Calea 13 Septembrie, Bucharest 050711, Romania 

a r t i c l e i n f o 

JEL classification: 

Primary 65N35 

Secondary 65N21 

65N38 

Keywords: 

Method of fundamental solutions 

Interior inverse scattering 

Impedance boundary condition 

Regularization 

a b s t r a c t 

We employ the method of fundamental solutions (MFS) for detecting a scatterer surrounding a host acoustic 

homogeneous medium D due to a given point source inside it. On the boundary of the unknown scatterer (assumed 

to be star-shaped), allowing for the normal velocity to be proportional to the excess pressure, a Robin impedance 

boundary condition is considered. The coupling Robin function 𝜆 may or may not be known. The additional 

information which is supplied in order to compensate for the lack of knowledge of the boundary 𝜕D of the 

interior scatterer D and/or the function 𝜆 is given by the measurement of the scattered field (generated by the 

interior point source) on a curve inside D . These measurements may be contaminated with noise so their inversion 

requires regularization. This is enforced by minimizing a penalised least-squares functional containing various 

regularization parameters to be prescribed. In the MFS, the unknown scattered field u s is approximated with a 

linear combination of fundamental solutions of the Helmholtz operator with their singularities excluded from the 

solution domain D and this yields the discrete version of the objective functional. Physical constraints are added 

and the resulting constrained minimization problem is solved using the MATLAB © toolbox routine lsqnonlin . 
Numerical results are presented and discussed. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Recently, the interior inverse scattering problem initiated in [6] for 
testing the structural integrity of a cavity has received some attention 
[17,18,21] due to its potential practical importance and pathway to 
impact proposed in [17] to model the calculation of the extent of 
a homogeneous reservoir from the measured data obtained from a 
transmitter-receiver instrument which is lowered through a borehole 
into the reservoir. 

The numerical reconstruction of a sound-soft, i.e. perfectly conduct- 
ing scatterer D on whose boundary 𝜕D the total field u vanishes, from 

measurements on an interior closed curve Γ inside D was previously 
investigated as follows: 

– in [17] , using the boundary element method (BEM) based on the 
single layer potential representation for the scattered field u s and a 
regularized Newton minimization method; 

– in [18] , using the BEM based on the double layer potential represen- 
tation for u s and the linear sampling method; 
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– in [21] , using a decomposition method based on a variant of the 
method of fundamental solutions (MFS), see [4,11] , combined with a 
simple graphical method based on plotting the zero level set contours 
of the total field; 

– in [9,10] , using the MFS (or the plane waves method (PWM)) com- 
bined with a trust region reflective algorithm for minimizing the 
nonlinear Tikhonov regularization functional subject to constraints, 
implemented using the MATLAB 

© toolbox routine lsqnonlin . 

Later on, the linear sampling method and the factorization method 
were employed in [15,19] , respectively, to reconstruct a scatterer on 
whose boundary a homogeneous Robin boundary condition is satisfied 
by the total field. It is the purpose of this paper to extend the MFS 
analysis of [9] for the sound-soft scatterer to the more general identi- 
fication of a scatterer with a Robin boundary condition which includes 
the sound-hard case of a perfectly insulated scatterer when 𝜆 = 0 and 
the sound-soft case of a perfectly conducting scatterer when 𝜆 = ∞. 
Moreover, the coupling function 𝜆 between the Dirichlet and Neumann 
data in the Robin boundary condition may be known or unknown. 
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Therefore, we shall investigate three inverse problems: Problem A in 
which D is unknown but 𝜆 is known, problem B in which D is known 
but 𝜆 is unknown, and problem C in which both D and 𝜆 are unknown. 

The plan of the paper is as follows. In Section 2 , we present the for- 
mulations of the direct and inverse problems that are investigated. The 
MFS approximation of the scattered field and the numerical realiza- 
tion of the constrained nonlinear minimization problem are described 
in Section 3 . Numerical results are analyzed and discussed in terms of 
accuracy and stability in Section 4 . In particular, the influence of the 
regularization parameters on the stability of the reconstructions of the 
scatterer D and/or the Robin function 𝜆 are thoroughly investigated. 
Finally, conclusions and possible future work are included in Section 5 . 

2. Mathematical formulation 

We consider the scattering with a wave number 0 < 𝑘 = 𝜔 ∕ 𝑐, where 
c > 0 is the speed of sound and 𝜔 > 0 is the frequency of a time har- 
monic wave, due to a given point source z 0 inside the two-dimensional, 
bounded and simply-connected scatterer domain D with a sufficiently 
smooth, e.g. C 

2 , [19] , or Lipschitz, [15] , boundary 𝜕D . Then the inci- 
dent field is given by 

𝑢 inc ( 𝒙 ) = Φ( 𝒙 , 𝒛 0 ) ∶= 

i 
4 
𝐻 

(1) 
0 ( 𝑘 |𝒙 − 𝒛 0 |) , 𝒙 ∈ ℝ 

2 , (2.1) 

where i is the imaginary unit and 𝐻 

(1) 
0 denotes the Hankel function of 

first kind of order zero, and the scattered field u s satisfies the Helmholtz 
equation 

Δ𝑢 s + 𝑘 2 𝑢 s = 0 in 𝐷. (2.2) 

Plane wave propagation in a given direction or an incoming cylindrical 
wave [13,14] , can also be considered instead of the point source wave 
(2.1) . 

On the boundary 𝜕D of D we assume that a homogeneous Robin 
boundary condition for the total field 𝑢 = 𝑢 s + 𝑢 inc holds, namely, 

𝜕𝑢 

𝜕𝜈
+ i 𝜆 𝑢 = 0 , on 𝜕𝐷, (2.3) 

where 𝝂 is the outward unit normal to 𝜕D and 0 < 𝜆 ∈ C ( 𝜕D ) or L ∞( 𝜕D ) 
is a Robin coupling real function usually called the impedance function, 
[15] , or admittance, [8] . When 𝜆→0 or 𝜆→∞ we obtain the partic- 
ular cases of a sound-hard or sound-soft scatterer, respectively. How- 
ever, unlike these ideal cases, the Robin impedance boundary condition 
(2.3) with 0 < 𝜆< ∞ is more realistic because, in practice, scatterers are 
never perfect and the waves always penetrate a little through the bound- 
ary 𝜕D , with 𝜆 characterising the level of penetration. 

Using (2.1) we can recast (2.3) as a non-homogeneous Robin bound- 
ary condition for the scattered field given by 

𝜕𝑢 s 

𝜕𝜈
( 𝒙 ) + i 𝜆 𝑢 s ( 𝒙 ) = 

𝑘 i 
4 

𝐻 

(1) 
1 ( 𝑘 |𝒙 − 𝒛 0 |) 

(
𝒙 − 𝒛 0 

)
⋅ 𝝂( 𝒙 ) 

|𝒙 − 𝒛 0 |
+ 

𝜆

4 
𝐻 

(1) 
0 ( 𝑘 |𝒙 − 𝒛 0 |) , 𝒙 ∈ 𝜕𝐷, (2.4) 

where 𝐻 

(1) 
1 is the Hankel function of the first kind of order one. 

2.1. The direct problem 

When D and 𝜆 are known, equations (2.2) and (2.4) form the direct 
problem which is well-posed in 𝐶 

2 ( 𝐷) ∩ 𝐶 

1 ( 𝐷 ) or H 

1 ( D ), [2,3] . In the 
case of the Dirichlet ( 𝜆→0) or Neumann ( 𝜆→∞) boundary conditions 
we need to add the assumption that k 2 is not a Dirichlet or Neumann 
eigenvalue of −Δ in D , respectively. 

2.2. The inverse problems 

We consider the following inverse problems under the general as- 
sumption that: 

( 𝛼) k 2 is not a Dirichlet eigenvalue for −Δ in the interior Ω of the 
curve Γ introduced below. Note however that this assumption is not so 
essential as we can always rescale Γ, [21] . 

2.2.1. Inverse problem A 

Solve the Helmholtz equation (2.2) for the scattered field u s subject 
to the Robin boundary condition (2.4) with given 𝜆 but unknown bound- 
ary 𝜕D which also has to be determined from additional measurements 
of u s on some known interior closed curve Γ assumed to lie inside D . The 
condition that z 0 ∈Γ is not essential but in the sequel we shall assume, 
for simplicity, that Γ is the circle of radius | z 0 | > 0 centred at the origin, 
i.e. 

Γ = 𝜕𝐵 |𝒛 0 |( 𝟎 ) . (2.5) 

Then the above additional condition is 

𝑢 s ( 𝒙 ) = 𝑓 ( 𝒙 ) , 𝒙 ∈ Γ, (2.6) 

where f is some given measured data which may be contaminated with 
noise. 

2.2.2. Inverse problem B 

In this case we again consider the Helmholtz equation (2.2) for the 
scattered field u s subject to the Robin boundary condition (2.4) but now 

the boundary 𝜕D is known and the impedance 𝜆( x ) is unknown. The 
additional measurements are again given by (2.6) . 

2.2.3. Inverse problem C 

Now both the boundary 𝜕D and the impedance 𝜆( x ) in (2.4) are un- 
known. 

At this stage, we briefly discuss the way the data f , obtained from the 
measurement of the scattered field Γ, could be interpreted. We first ob- 
serve that the data f in expression (2.6) is rather limited because it only 
contains the measurement obtained from a single point source z 0 ∈D . 
Also, (2.6) can be further restricted to a limited aperture case by only 
specifying it on a subportion Γ1 of Γ. We have also fixed the wave num- 
ber k . So, we can remark that in some practical applications it may be 
possible to measure more data obtained by varying the wave number 
k or the point source z 0 along Γ. Thus, in general, for compatible data 
the function f in (2.6) depends on both z 0 and k . In particular, for fixed 
k satisfying assumption ( 𝛼), but varying z 0 ∈Γ so that (2.6) reads as a 
matrix of measured data 

𝑢 s ( 𝒙 ; 𝒛 0 ) = 𝑓 ( 𝒙 ; 𝒛 0 ) , 𝒙 , 𝒛 0 ∈ Γ, (2.7) 

then a solution of inverse problem C given by (2.2), (2.4) and (2.7) is 
unique, [19] . However, this uniqueness result requires the measurement 
u s ( · ; z 0 ) for infinitely many point sources z 0 ∈Γ which may become 
impractical. We note that for a single fixed source z 0 ∈Γ, the uniqueness 
of the restricted inverse problem A given by (2.2), (2.4) and (2.6) is 
only known when we assume a priori that D is a disk, [15] , a small and 
smooth perturbation of a disk, [12] , or in the sound-soft case ( 𝜆→∞), by 
requiring D to be contained in a disk of radius t 0 / k , where 𝑡 0 = 2 . 40482 
is the smallest positive zero of the Bessel function J 0 . 

On first solving the direct well-posed Dirichlet problem for the 
Helmholtz equation given by (2.2) in Ω and (2.6) , with assumption ( 𝛼), 
the normal derivative 

𝜕𝑢 s 

𝜕𝜈
( 𝒙 ) =∶ 𝑔( 𝒙 ) , 𝒙 ∈ Γ, (2.8) 

can be obtained. It then means that (2.6) and (2.8) are compatible 
Cauchy data for the Helmholtz equation (2.2) in the annular domain 
D \ Ω. From the unique continuation property of the Helmholtz equation 
it follows that the Cauchy data u s and 𝜕 𝜈u s on 𝜕D are uniquely deter- 
mined. Then, in principle, provided that u ≠0 almost everywhere on 𝜕D 

the coefficient 𝜆 could be determined directly from (2.3) as 

𝜆( 𝒙 ) = i 
𝜕 𝜈𝑢 ( 𝒙 ) 
𝑢 ( 𝒙 ) 

, 𝒙 ∈ 𝜕𝐷. (2.9) 

However, this direct method was found to be less accurate and stable 
than a regularized nonlinear least-squares method based on approximat- 
ing 𝜆 with a finite linear combination of trigonometric functions, [19] . 
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