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a b s t r a c t 

This article presents a procedure for searching for an optimal shape parameter for the solution of partial differ- 

ential equations with the corresponding initial and boundary conditions, where the solution of the problem is 

unknown. In recent years, radial basis function methods have emerged as alternative computing methods in the 

scientific computing community. 

The numerical solution of partial differential equations has usually been obtained by using finite difference 

methods, finite element methods (FEMs), boundary elements methods or finite volume methods. In our case, we 

use the multiquadric radial basis function, Gershgorin ’s theorem and the Newton method for searching an optimal 

shape parameter for solving diffusion equations. More cases are presented, the results of which are compared with 

the results obtained by the FEM. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Heat and mass transfer in porous media has practical applications 
in several different areas, such as water pollution, heat transfer, storage 
of solar energy, drying and the study of moisture migration in soils and 
construction materials. 

The numerical solution of partial differential equations (PDEs) has 
usually been obtained either by finite difference methods (FDMs) [1] , fi- 
nite element methods (FEMs), finite volume methods (FVMs), etc. These 
methods require a mesh to support the localized approximations. In re- 
cent years, the numerical methods have focused on a concept stemming 
from radial basis functions (RBFs). 

The concept of solving PDEs using RBFs for hyperbolic, parabolic and 
elliptic PDEs was introduced in [2] . A key feature of the RBFs method 
is that it does not require a grid. It has been used for modelling ra- 
dionuclide migration [3] , solving moving boundary problems [12] and 
for many other problems [4] . A few different meshless boundary dis- 
cretization techniques have been proposed and developed [5–7] , which 
are different but also related to the method proposed in this paper. 

The aim of this paper is to present a procedure for searching for an 
optimal shape parameter for a solution of the PDEs (in our case the diffu- 
sion equation) with the corresponding initial and boundary conditions, 
for which the solution of the problem is unknown. 

For comparison purpose, other strategies for selecting good values 
of the shape parameter are used, such as the statistical tool leave-one- 
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out cross-validation (LOOCV) [8] , the greedy algorithm [9] and singular 
value decomposition (SVD) [10] . Condition numbers can also be calcu- 
lated by using SVD. The shape parameter is adjusted until the condition 
number is in the desired range (10 13 ≤ 𝜅( W ) ≤ 10 16 ) for double precision 
computers. 

The commonly used RBFs are: linear, cubic, thin-plate spline, Gaus- 
sian, and MQ [11] . In our case, the MQ ( 𝜙( 𝑟 ) = ( 𝑟 2 + 𝑐 2 ) 𝛽 , 𝛽 = 1∕2 ) type 
of the RBFs was used. The parameter c is usually called the shape pa- 
rameter and is a real number. 

Some brief information about the RBFs method will also be presented 
(see the details in [12] ). More cases will be presented to illustrate the 
usefulness of the method. 

2. Solving diffusion equation by the RBFs method 

This equation describes temperature (density) fluctuations in a ma- 
terial undergoing diffusion: 

𝜕𝑇 

𝜕𝑡 
= 

𝜕 2 𝑇 

𝜕𝑥 2 
+ 

𝜕 2 𝑇 

𝜕𝑦 2 
. (1) 

2.1. Initial conditions 

The problem is mathematically completely defined when the initial 
and boundary conditions are specified. The initial condition is presented 
by 

𝑇 ( 𝑥, 𝑦, 0) = 𝑇 0 ( 𝑥, 𝑦 ) . (2) 
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2.2. Boundary conditions 

The boundary condition is presented by Neumann (in our case pre- 
scribes the heat flow) 

𝜕𝑇 

𝜕𝑥 
𝑒 𝑛𝑥 + 

𝜕𝑇 

𝜕𝑦 
𝑒 𝑛𝑦 = 0 , (3) 

where e nx and e ny are components of the normal to the boundary surface, 
and Dirichlet boundary conditions: 

𝑇 ( 𝑥, 𝑦 ) = 0 . (4) 

2.3. Implicit discrete time marching scheme 

To time advance the solution, we consider the implicit discrete time 
marching scheme. Assuming that both the data and evaluation centers 
are fixed in time. By defining some matrices and terms for governing 
PDEs and boundary conditions, the solution of time-advanced expansion 
coefficients, and, consequently, 𝑇 𝑛 +1 , are calculated quickly. 

The approximate solution is expressed as below: 

𝑇 
(
x , 𝑡 𝑛 +1 

)
= 

𝑁 ∑
𝑗=1 
𝛼𝑛 +1 
𝑗 

Φ𝑗 ( x ) , (5) 

where 𝛼𝑛 +1 
𝑗 
, 𝑗 = 1 , … , 𝑁, are the unknown coefficients to be determined 

and Φ𝑗 ( x ) = 

√ 

( 𝑥 − 𝑥 𝑗 ) 2 + ( 𝑦 − 𝑦 𝑗 ) 2 + 𝑐 2 are Hardy ’s multiquadric func- 

tions [13] . 
We consider the implicit scheme of Eqs.(1) and (3) . By substituting 

Eq.(5) into Eqs.(1) and (3) , we obtain: 

𝑁 ∑
𝑗=1 

( 

Φ𝑗 ( x 𝑖 ) 
△𝑡 

− 

𝜕 2 Φ𝑗 ( x 𝑖 ) 
𝜕𝑥 2 

− 

𝜕 2 Φ𝑗 ( x 𝑖 ) 
𝜕𝑦 2 

) 

𝛼𝑛 +1 
𝑗 

= 

𝑇 𝑛 ( x 𝑖 ) 
△𝑡 

, 𝑖 = 1 , … , 𝑁 − 𝑁 𝐵 , (6) 

𝑁 ∑
𝑗=1 

( 

𝜕Φ𝑗 ( x 𝑖 ) 
𝜕𝑥 

𝑒 𝑛𝑥 + 

𝜕Φ𝑗 ( x 𝑖 ) 
𝜕𝑦 

𝑒 𝑛𝑦 

) 

𝛼𝑛 +1 
𝑗 

= 0 , 𝑖 = 𝑁 − 𝑁 𝐵 + 1 , … , 𝑁, (7) 

where N B and N represent the number of points at boundary and all 
discretized points and △t is a time discretization step. 

The described procedure results in the system of equations 

𝐖 = 

[ 
𝑊 𝐿 

𝑊 𝐵 

] [
𝛼
]
= 

[ 
𝑓 

0 

] 
, (8) 

where 

𝑊 𝐿 = 

Φ𝑗 
(
x 𝑖 
)

△𝑡 
− 

𝜕 2 Φ𝑗 
(
x 𝑖 
)

𝜕𝑥 2 
− 

𝜕 2 Φ𝑗 
(
x 𝑖 
)

𝜕𝑦 2 
, x 𝑖 ∈ 𝑋 𝐼 , (9) 

𝑊 𝐵 = 

𝜕Φ𝑗 
(
x 𝑖 
)

𝜕𝑥 
𝑒 𝑛𝑥 + 

𝜕Φ𝑗 
(
x 𝑖 
)

𝜕𝑦 
𝑒 𝑛𝑦 , x 𝑖 ∈ 𝑋 𝐵 , (10) 

𝑓 = 

𝑇 𝑛 
(
x 𝑖 
)

△𝑡 
, x 𝑖 ∈ 𝑋 𝐼 , (11) 

3. An optimal shape parameter search 

Our goal is to define a new method for searching for an optimal 
shape parameter using a combination of MQ RBF, Gershgorin ’s theorem 

(about eigenvalues of matrix) and the Newton iteration for searching 
the zero of a function. 

The accuracy of the calculated optimal shape parameter method is 
confirmed by other methods which do or do not possess a shape param- 
eter. For instance, we compare the results with those of the FEM. The 
objective is to confirm the validity and accuracy of our method with 
other methods. 

In an iteration algorithm, we calculate a matrix, W , that is con- 
structed from the MQ functions outside the time loop. This matrix, W , 
is defined as the value of the operator, L , on the MQ basis function over 
Ω\ 𝜕Ω and the boundary operator, B , on the MQ basis function on 𝜕Ω. 

Definition 1. Question is a shape parameter, c . Shape parameter is a 
parameter that MQ function possess, say Hardy ’s multiquadric functions 

[13] , Φ𝑗 ( x ) = 

√ 

( 𝑥 − 𝑥 𝑗 ) 2 + ( 𝑦 − 𝑦 𝑗 ) 2 + 𝑐 2 . 

Now we define an algorithm to find an optimal shape over Ω\ 𝜕Ω. 
The algorithm is iterative (step-to-step in a loop). Through this iteration 
the sequence of eigenvalues of each matrix in sequence converge to the 
eigenvalues of the limit matrix. The very limit matrix, W , is positively 
defined (it is the limit one and the limit matrix is positively defined 
because its eigenvalues are all positive). The matrices in iteration se- 
quence posses some additional properties that are valuable in proving 
the validity of the method. For instance, one of the valuable properties 
of such a matrix is the fact that its eigenvalues are real and different 
from each other. The function of a matrix is accurately defined with 
the matrix ’s spectrum. Our matrices are similar, and influenced by the 
shape parameter, c . In addition to the shape parameter, the construc- 
tion of a matrix, as well as the function above, depends on material and 
geometric properties of the continuum, as does the solution. 

We seek for an optimal shape parameter, where the term ‘optimal ’
means the result of the iteration being optimal in a certain sense. 

Definition 2. We define an optimal shape parameter to be the value of 
the shape parameter that is the closest to the minimal eigenvalue of the 
limit matrix W ( c ). Through iteration the sequence of matrices and se- 
quence of eigenvalues converge to a diagonal matrix and, respectively, 
eigenvalues converge to limit eigenvalues, which is equal to the eigen- 
values of limit matrix. Consequently, the shape parameter is close to the 
eigenvalue as much as desired. 

Theorem 3. Minimum of diagonal matrix ’s elements equals the optimal 

shape parameter. 

Proof. From the above facts we assert, as Gershgorin intervals shrink, 
eigenvalues are also close to each other. In a matrix sequence the eigen- 
values limit to shape parameter, which is also a diagonal element. As 
intervals shrink, the values outer of diagonal tend to zero. In a limit, 
therefore, a diagonal matrix is derived. Diagonal parameters are also 
eigenvalues, their value a simple function of optimal shape parameter. 

An alternative definition: an optimal shape parameter could also be 
the sum of limit eigenvalues. The eigenvalues of the limit matrix (and 
the limit of the eigenvalues sequence) lie on the main diagonal; since 
shape parameter, c , is the function of RBF (and not of the differential 
operator). 

Gedankexperimnet 1. We perform a gedankexperimnet to confirm 

the above reasoning. Take a matrix and use the Gershgorin ’s theorem 

about eigenvalues of the square matrix that states how the eigenval- 
ues of the matrix are distributed across the ℂ plane, and (in our case) 
along the real, ℝ axes. This fact enables us to calculate shape parameter 
through the contemporary experiment. Initialize some shape parameter. 
We use an iterative algorithm of the functions of matrices and of shapes. 
Through the iteration the rows of matrix (say 2-norm) decrease as func- 
tion F ( x ) is applied to the matrix. We examine Gershgorins intervals. 
The smallest Gershgorins interval gives us an estimate of how much the 
smallest (not necessary but plausible) eigenvalue differs from a diago- 
nal element of the matrix (a function of the estimated shape parameter). 
Such an interval comes from the limit of the sequence. In the limit matrix 
all eigenvalues lie on the matrix diagonal. Since the matrix is diagonal, 
the Gershgorins norms all vanish. We iterate the shape-parameter loop 
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