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a b s t r a c t 

The main objective of this paper is to present an attempt of an application of the recently developed higher 

order multipoint meshless FDM in the analysis of nonlinear problems. The multipoint approach provides a higher 

order approximation and improves the precision of the solution. In addition to improved solution quality, the 

essential feature of the multipoint approach is its potentially wide ranging applicability. This is possible, because 

in both the multipoint and standard meshless FDM, the difference formulas are generated at once for the full 

set of derivatives. Using them, we may easily compose any required FD operator. It is worth mentioning that all 

derivative operators depend on the domain discretization rather than on the specific problem being analysed. 

Therefore, the solution of a wide class of problems including nonlinear ones, may be obtained with this method. 

The numerical algorithm of the multipoint method for nonlinear analysis is presented in this paper. Results 

of selected engineering benchmark problems – deflection of the ideal membrane and analysis of large deflection 

of plates using the von Karman theory – are considered. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

The most popular method for numerical analysis of the engineer- 

ing problems of last decades is the Finite Element Method (FEM) [1] . 

However, besides the FEM, many other methods have been developed 

over time. To avoid the difficulties encountered in the traditional FE ap- 

proach, such as the sometimes troublesome process of mesh generation 

in the case of complex geometries, remeshing, and mesh distortions in 

large deformation problems – alternative methods of discrete analysis 

have also been developed. In the recent years, among them various so 

called meshless methods and isogeometric methods [2] , which use CAD 

software for geometric discretization, were appeared. 

As opposed to the finite element approach, the meshless methods 

may deal with a totally irregular cloud of nodes only rather than with 

structure composed of elements. Due to the arbitrarily distributed nodes 

without any imposed structure (such as splitting domain into finite el- 

ements, mapping restrictions, or mesh regularity), the local changes of 

discretization, e.g. inserting, deleting, and moving particular nodes, may 

be applied without difficulties. Various meshless methods [3] differ from 

each other in the process of generation of the unknown function local ap- 

proximation. Such approximation is performed around the nodes rather 

than between them, as in the FEM. 

Both approaches, the meshless methods, as well as FE method have 

of course their own advantages and disadvantages. The appropriate op- 

timal choice depends on the object geometry, the type of problem, and 

many other important factors. 
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The oldest and possibly one of the most developed meshless method 

is the Meshless Finite Difference Method (MFDM) [4,5] . The Moving 

Weighted Least Squares (MWLS) approximation technique [5] , based 

on the nodes configuration called the FD star or stencil, is applied in 

this method. 

The innovative higher order extension of the MFDM, namely the 

Multipoint meshless finite difference method [6] – has been recently 

developed by the authors for analysis of boundary value (b.v.) prob- 

lems. The method formulation, following the original Collatz [8] multi- 

point FD concept (outlined only for the regular mesh and strong formu- 

lation), has been modified and extended to the multipoint MFDM. The 

new multipoint method is based on the moving weighted least squares 

approximation technique instead of the polynomial interpolation pro- 

posed by Collatz. Moreover, arbitrarily irregularly distributed nodes, as 

well as strong, or various weak, or mixed (local–global) formulations of 

the b.v. problems may be used here. 

The idea of the multipoint approach [6] is based on raising the 

approximation order of unknown function by using a combination of 

searched function values together with a combination of additional de- 

grees of freedom (d.o.f.) at all stencil nodes. The known values of the 

considered equation right hand side (the specific case), or unknown 

function derivatives (the general case) may be used as the additional 

d.o.f. Such approach provides higher solution order and, as a conse- 

quence, better quality without increasing the mesh density. It uses the 

same FD stars that are needed to generate the FD operators in the stan- 

dard MFDM approach. 
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Fig. 1. Solution convergence for the multipoint method and the standard MFDM (Pois- 

son’s b.v. problem). 

Fig. 2. MFD star for arbitrarily distributed nodes in the domain. 

There are numerous advantages of the multipoint MFDM approach. 

Due to its higher order approximation, the method allows for using de- 

creased number of nodes ( Fig. 1 ). The same solution quality may be 

achieved either on a coarse mesh using the high order approximation 

approach ( p -type), or by solving a problem on the very dense mesh 

( h -type), which often requires remeshing with high computational cost. 

In addition to solution quality improvement, the proposed multipoint 

method, like the standard MFDM, is especially convenient for nonlinear 

analysis, due to fast generation of updated stiffness matrices and evalua- 

tion of all unknown derivatives in terms of only searched nodal function 

values. 

The MFD-based methods allow for analysis of a wide class of b.v. 

problems because they generate MFD operators rather for full range of 

particular derivatives of required order, than any specific operator like 

in the FEM. In this way, any kind of differential operator needed may be 

composed of those particular ones. Moreover, the FD solution approach 

based on the MWLS approximation provides the derivative operators 

without any special additional cost. In this case the MFD operators de- 

pend on discretization of the problem domain only. This fact is advanta- 

geous from the point of view of the calculation efficiency, especially for 

engineering tasks, where often problem formulation may be changed at 

whole domain or part of them, but the discretization remains still the 

same. 

The variety of tests done show that the higher order multipoint MFD 

method may have a potentially wide range of applications. The solution 

of almost all problems, including nonlinear ones may be obtained in this 

way. 

This research is focused on using the meshless finite difference 

method, and particularly, the higher order multipoint meshless FDM 

[6,7] for analysis of nonlinear problems. 

The paper is organized as follows. In Section 2 the multipoint 

MFDM solution approach and particularly the general formulation of the 

method is briefly discussed. Additionally the alternative way to calculate 

the higher order derivatives is presented in Section 2.4 . In Section 3 the 

multipoint and MFDM approaches for the numerical analysis of non- 

linear problem are outlined. The numerical examples, that demonstrate 

selected results of the MFDM application to the nonlinear problem are 

presented in Section 4 . Section 5 outlines some details of the error anal- 

ysis. Finally, the paper ends with selected concluding remarks. 

2. Higher order multipoint extension of the meshless FDM 

2.1. Problem formulation 

The higher order multipoint meshless finite difference method, as 

well as the standard MFDM may be used for analysis of b.v. problems 

posed in the strong (local), various weak (global), or mixed (local–

global) problem formulations. Any formulation which involves an un- 

known function and its derivatives may be considered here. 

The strong formulation, natural for the classical (regular meshes) 

FDM, is given as a set of differential equations with appropriate bound- 

ary conditions { 

𝐿𝑢 = 𝑓, 

𝐺𝑢 = 𝑔, 

for 
for 

𝑃 ∈ Ω
𝑃 ∈ 𝜕Ω (1) 

where L, G are differential operators and u = u ( P ). 

The weak formulations may be posed either in the form of a func- 

tional minimization, or more general as variational principle in the do- 

main Ω

𝑏 ( 𝑢, 𝑣 ) = 𝑙( 𝑣 ) , ∀ 𝑣 ∈ 𝑉 , (2) 

where l is a linear form which depends on the test function v, b is a 

bilinear functional dependent on v and solution u of the considered b.v. 

problem, and V is the space of test functions. 

The trial u (an approximate solution of the problem) and test v 

functions may be different from each other. Assuming the trial func- 

tion locally defined on each subdomain Ωi within the domain Ω, the 

local–global formulation of the Petrov–Galerkin type may be obtained. 

Several meshless local Petrov–Galerkin (MLPG) formulations were de- 

veloped [9] using various types of the test function. In particular, in the 

MLPG5 formulation [9,10] , the test function v may be satisfied locally 

in each subdomain Ωi as the Heaviside type test function 

𝑣 = 

{ 

1 in Ωi 
0 outside Ωi 

. 

Hence, in the whole domain Ω, inside each subdomain Ωi , any 

derivative of test function v is equal to zero. Therefore, the relevant 

terms in the functional b ( u, v ) and in l ( v ) vanish, reducing in this way 

the amount of involved calculations. Therefore, the MLPG5 local–global 

formulation may be computationally more efficient than the other ones. 

2.2. The idea of the multipoint approach 

Let us consider the strong (local) formulation of the b. v. problem 

given in the domain Ω for the n -th order PDE with appropriate boundary 

conditions (1) or an equivalent weak (global) one formulated as the 

variational principle (2) . 

The multipoint method, as well as the MFDM is based on the local 

MWLS approximation constructed on the node stencil called the MFD 

star ( Fig. 2 ). The finite difference operator Lu is generated at this stencil. 
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