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a b s t r a c t 

The virtual spring technique is firstly introduced into the differential quadrature finite element method (DQFEM) 

to simulate the practical elastic restraints. The imposing procedures of the boundary conditions are simplified so 

that a certain kind of restraints can be easily achieved by merely setting different stiffness of the springs. The 

mapping technique is used to apply the DQFEM to irregular domain. The effects of different nodes collocation 

methods on the mapping results and vibration results are also discussed, through which one can conclude that the 

nodes distribution methods affect the accuracy of the mapping technique and the computing time. Especially, the 

uniformly distributed nodes are not the best selection for mapping process. The Guass Lobatto quadrature nodes 

are the good choice to obtain the better results in a relatively short time. Several numerical examples are carried 

out to demonstrate the validity and accuracy of the present solution by comparing with the results obtained by 

other researchers. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The finite element method (FEM) and finite difference method 

(FDM) have been widely used in many engineering problems. In these 

methods, the functions of an element are usually approximated by the 

low-order polynomials. However, in order to obtain the high accuracy 

of the results, the number of elements will increase rapidly and then it 

will consume more computing resource. Another alternative algorithm 

also called as the differential quadrature method (DQM) is proposed by 

Bellman et al. [1,2] . The greatest advantage of this algorithm is merely 

using a little of grid points to achieve high accuracy. However, there are 

some drawbacks in determining the weighting coefficients [3] in the 

original DQM. Many researchers have concerned the application of the 

multiple boundary conditions in DQM [4–6] . However, up to now there 

have been no feasible, general and simple techniques [7] to deal with 

the discontinuity problem when applying the DQM to the vibration 

analysis for structures with multiple boundary conditions. To solve 

the above problem, a novel method named as the DQEM which draws 

lessons from the discrete element idea of the finite element method 

is formulated [8–10] . However, from the existing literature, we can 

know that the solving process of DQEM is very cumbersome and not 

conducive to study the complex structure forms. Recently, a differential 

quadrature finite element method (DQFEM) has been proposed by 

Yufeng Xing [11] . In DQFEM, the Hamilton’s principle is used to derive 

the equation of motion of a plate for the free vibration analysis, which 
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is similar to the FEM. The discretization is operated on the partial 

derivative in the strain energy and kinetic energy, which is different 

from the operation in most of the literatures, where the discretization is 

operated directly on the differential equations [12–15] . Also, in DQFEM 

the boundary conditions are imposed similarly as that in FEM while in 

other literatures the discretized expressions of classical boundary con- 

ditions are imposed to modify the coefficient weighting matrix, which 

makes it complicated to apply the multiple boundary conditions to the 

structures. 

The DQFEM has been used to solve many vibration problems with 

irregular geometries [16] . However, most of the researches only consid- 

ered the classical boundary conditions of the structures while few works 

on the vibration characteristic of structures with elastic restraints can be 

found. The elastic restraints are simulated by employing translational 

and rotational springs linking the structure and the ground [17] . By 

setting different spring stiffness to achieve desired boundary conditions 

including several ideal classical boundary conditions. Many works 

have been done on the influence of spring stiffness on the vibration 

characteristic of the structure [17–23] . However, according to the 

available literatures, most of the structures are of regular geometries, 

such as rectangular [22,23] , circle [18] , sector [18] , etc. The main 

purpose of the authors is to introduce the concept of elastic restraints 

into the DQFEM to expand the application of the method to the 

analysis of vibration problems with elastic restraints as well as irregular 

domains. 
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Fig. 1. The beam with elastic restraints on both ends. 

Fig. 2. Rectangular plate with elastic restraints at four sides. 

Fig. 3. Cartesian coordinate system and natural coordinate system. 

Since the original DQM cannot be applied for the irregular domain 

directly, a mapping technique is introduced in order to expand the 

utilization of DQM into irregular domain. Based on the above tech- 

nique, Fantuzzi, N [14,15] used the quadratic serendipity element to 

transform the coordinates in Cartesian coordinate system into natural 

coordinate system. Liu Bo [7] presented the results obtained from cubic 

and quartic serendipity elements. However, the studies of higher-order 

serendipity element and the distributions of the element nodes on the 

accuracy of the mapping process are infrequent. 

Based on the lack of researches mentioned above, the main contents 

of this paper are shown as follows: Firstly, introduce the basic rules 

of DQ and elaborate the specific principles of DQFEM. Then, a beam 

structure with elastic restraints is given to illustrate how the virtual 

translational and rotational springs are applied into equations of 

motion. Next, an example of a rectangular plate with elastic restraints 

is given to illustrate the procedures of applying the elastic restraints 

to a two-dimensional problem. Finally, the vibration of a plate with 

curved side is presented. The influence of higher-order serendipity 

element and the distributions of element node on the accuracy and 

of the mapping technique and the natural frequencies of the plate are 

discussed. Some numerical results are presented and compared with 

the literatures available, which proves the accuracy of the present 

work. 

2. Theory and formulations 

2.1. The DQ rules 

Considering a one-dimensional function f ( x ) that is derivable in the 

interval [ a, b ], and according to the DQ rule, the first-order derivative 

of function f ( x ) can be written as 

d 𝑓 ( 𝑥 ) 
d 𝑥 

= 

𝑁 ∑
𝑗=1 

𝑊 𝑗 ( 𝑥 ) 𝑓 ( 𝑥 𝑗 ) (1) 

where W j ( x ) is interpolation basis function, which is N -1 order when 

polynomials are used in the interpolation. x j is coordinates of j th grid 

point among N inequality points defined in a = x 1 < x 2 < …< x N = b . Let 

A ij = W j ( x i ) and f j = f ( x j ), then the first-order derivative of function f ( x ) 

at i th grid point x i can be written as 

d 𝑓 ( 𝑥 ) 
d 𝑥 
||||𝑖 = 

𝑁 ∑
𝑗=1 

𝐴 

(1) 
𝑖𝑗 𝑓 𝑗 (2) 

where 𝐴 

(1) 
𝑖𝑗 is the first-order weighting coefficient, thus [ 𝐴 

(1) 
𝑖𝑗 ] is the 

first-order weighting coefficient matrix. The s th-order derivative of the 
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