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a b s t r a c t 

The current paper is an improvement of the developed technique in Shu et al. (2005). The proposed improvement 

is to reduce the used CPU time for employing the local radial basis functions-differential quadrature (LRBF-DQ) 

method. To this end, the proper orthogonal decomposition technique has been combined with the LRBF-DQ 

technique. For checking the ability of the new procedure, the compressible Euler equation is solved. This equation 

has been classified in category of system of advection–diffusion equations. Moreover, several test problems are 

given that show the acceptable accuracy and efficiency of the proposed scheme. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

During the recent decade, the meshless methods have been employed 
to solve the PDEs. The meshless methods do not use any mesh, element 
or lattice to discrete the computational domain for obtaining some nu- 
merical results. According to the basic advantages of meshless methods, 
these techniques may be classified as follows: 

• The global form, 
• The local form. 

The local meshless method is an improvement of meshless techniques 
where they can be split in two forms: 

• Local meshless methods based on the variational (local) weak form, 
• Local meshless methods based on the strong form. 

In the local meshless methods based on the weak form, there are 
some integrals which must be computed with suitable accuracy thus 
these methods have more difficulty and need more CPU time. But in 
the local meshless methods based on the strong form there are not any 
integral so these techniques will be very flexible to solve models with 
nonlinear term. 

A local meshless collocation method based on the finite difference 
approach is the RBFs finite difference (RBFs-FD) method. The RBF-FD 
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idea has been developed in [21,28,29,53,58,62,63] . Authors of [27] de- 
veloped a filter approach for RBF-FD that is related to traditional hy- 
perviscosity and which can be applied quickly in any number of dimen- 
sions. Also, some analytical explanations related to the weights of Gaus- 
sian RBF-FD formula are obtained in [7] . The main aim of [5,6,8] is 
to obtain an optimal shape parameter for RBF-FD technique. Also, some 
researchers studied RBF-FD method such as large-scale geoscience mod- 
eling [26] , hyperbolic PDEs on the sphere [10] , diffusion and reaction- 
diffusion equations (PDEs) on closed surfaces [55] , multi-dimensional 
Cahn–Hilliard, Swift–Hohenberg and phase field crystal equations [16] , 
multi-dimensional Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck 
systems arising in plasma physics [17] , etc. Also, the RBF approach is 
applied on financial mathematics such as an increasingly popular and 
promising approach to solve option pricing models [38,39] , a numeri- 
cal method to compute the survival (first-passage) probability density 
function in jump-diffusion models [3] , the survival (first-passage) prob- 
ability density function of jump-diffusion models with two stochastic 
factors [4] , etc. Also, authors of [2] developed a new RBF method in 
which the inversion of large system matrices is ignored. They proposed 
this technique by combining Gaussian radial basis functions with a suit- 
able operator splitting scheme [2] . 
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One of the local meshless methods is the RBF-differential quadra- 
ture (RBF-DQ) procedure. The differential quadrature method was first 
introduced by Bellman et al. [9] . The polynomial functions have been 
selected as the test function [56] . For the first time, authors of [58] pro- 
posed the meshless RBF-DQ method by using the RBFs. The RBF-DQ 

method is similar to the LRBF and RBF-FD methods. The RBFs-DQ 

is employed for solving several PDEs such as equations in fluid dy- 
namic [58,59] , system of boundary value problems [18] , coupled Klein–
Gordon–Zakharov equations [19] , one- two- and three-dimensional 
Cahn–Hilliard (CH) equations [20] , doubly-curved shells made of com- 
posite materials [64] , Stokes flow problem in a circular cavity [41] , etc. 
Natural phenomena can be described by partial differential equations 
(PDEs). We refer the interested reader to [67] for various applications 
of partial differential equations in science and engineering and also for 
some approaches in obtaining their solutions. 

The main aim of the current paper is to develop a combined lo- 
cal RBF-DQ approach to solve compressible Euler equation. The local 
RBF-DQ approach is constructed by combining radial basis functions 
concept and differential quadrature method. In the finite local differ- 
ential quadrature, the corresponding weights can be obtained by us- 
ing local polynomial approximations. Also, radial basis functions can be 
chosen instead as basis functions translates of radially symmetric func- 
tions. Thus, combination of radial basis functions with local differential 
quadrature approach leads to radial basis function-generated DQ formu- 
las. Furthermore, all approximations again local, but nodes can now be 
placed freely. Also, to reduce the used CPU time in the local RBF-DQ 

technique, we combined the local RBF-DQ with the proper orthogonal 
decomposition (POD) method. 

1.1. Organization chart for the manuscript 

In this paper, we apply a local truly meshless method based on the 
RBF-DQ technique for solving an equation in water science in two- 
dimensional case. 

The structure of this article is as follows: 

• In Section 2 , we explain the LRBF-DQ. 

• In Section 5 , we explain the snapshot collection and POD basis. 

• In Section 6 , we report the numerical experiments of solving the consid- 

ered models for some test problems. 

• Finally, a brief conclusion of the current paper has been written in 

Section 7 . 

2. The local RBFs-DQ method 

The local RBFs-DQ method approximates the unknown function us- 
ing the RBFs and it estimates m th derivative via differential quadrature 
(DQ) technique. Let Ω ⊂ ℝ and x i ∈Ω be arbitrary in which this point 
has a support domain with n i nodes { 𝑥 𝑖 0 , 𝑥 

𝑖 
1 , … , 𝑥 𝑖 𝑛 𝑖 

} ⊆ { 𝑥 1 , 𝑥 2 , … , 𝑥 
𝑁 

} 
that n i < N inside its support domain as is described in Fig. 1 . The main 
aim of the DQ method is approximating the m th derivative at a reference 
point by a smooth function as follows 

𝑑 𝑚 𝑢 ( 𝑥 ) 
𝑑 𝑥 𝑚 

||||𝑥 = 𝑥 𝑖 = 

𝑛 𝑖 ∑
𝑗=0 

𝑤 

𝑚,𝑥 
𝑖,𝑗 𝑢 ( 𝑥 

𝑖 
𝑗 ) , 𝑖 = 0 , 1 , 2 , … , 𝑁. (2.1) 

In the local RBFs-DQ, the RBFs can be selected as a set of base func- 
tions. Then the m th derivative of unknown function u ( x ) at point x i is 
approximated as 

𝑑 𝑚 𝜑 𝑗 

𝑑 𝑥 𝑚 

|||||𝑥 = 𝑥 𝑖 = 

𝑛 𝑖 ∑
𝑗=0 

𝑤 

𝑚,𝑥 
𝑖,𝑗 𝜑 𝑗 ( 𝑥 𝑖 𝑗 ) , 𝑗 = 0 , 1 , 2 , … , 𝑛 𝑖 , (2.2) 

Fig. 1. An arbitrary computational domain with a center point and its support domain. 

in which 𝜑 j is a radial basis function. Let coefficient matrix [ A ] be non- 
singular, then by solving the following system ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑑 𝑚 𝜑 0 ( 𝑥 𝑖 ) 
𝑑 𝑥 𝑚 

𝑑 𝑚 𝜑 1 ( 𝑥 𝑖 ) 
𝑑 𝑥 𝑚 

⋮ 
𝑑 𝑚 𝜑 𝑛 𝑖 ( 𝑥 𝑖 ) 

𝑑 𝑥 𝑚 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏟⏞⏞⏞⏟[

𝑑 𝑚 𝜑 ( 𝑥 𝑖 ) 
𝑑 𝑥 𝑚 

]

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝜑 0 ( 𝑥 𝑖 0 ) 𝜑 0 ( 𝑥 𝑖 1 ) … 𝜑 0 ( 𝑥 𝑖 𝑛 𝑖 ) 

𝜑 1 ( 𝑥 𝑖 0 ) 𝜑 1 ( 𝑥 𝑖 1 ) … 𝜑 1 ( 𝑥 𝑖 𝑛 𝑖 ) 

⋮ ⋮ ⋱ ⋮ 

𝜑 𝑛 𝑖 
( 𝑥 𝑖 0 ) 𝜑 𝑛 𝑖 

( 𝑥 𝑖 1 ) … 𝜑 𝑛 𝑖 
( 𝑥 𝑖 𝑛 𝑖 ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

[ 𝐴 ] 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

𝑤 

( 𝑚 ) 
𝑖, 0 

𝑤 

( 𝑚 ) 
𝑖, 1 

⋮ 

𝑤 

( 𝑚 ) 
𝑖, 𝑛 𝑖 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
⏟⏟⏟

[ 𝑤 ] 

, (2.3) 

we obtain 

[ 𝑤 ] = [ 𝐴 ] −1 
[ 
𝑑 𝑚 𝜑 ( 𝑥 ) 
𝑑 𝑥 𝑚 

] 
. (2.4) 

Definition 2.1. [25,68] A real valued continuous function 𝜙 ∈ ℝ 

𝑑 ⟶
ℂ is positive definite if for all sets 𝑋 = { 𝑥 1 , … , 𝑥 𝑁 

} ⊂ ℝ 

𝑑 of distinct 
points and all vectors 𝜆 ∈ ℝ 

𝑑 

𝜆𝑇 𝜙𝜆 = 

𝑁 ∑
𝑖 =1 

𝑁 ∑
𝑗=1 

𝜆𝑖 𝜆𝑗 𝜙( 𝑥 𝑖 − 𝑥 𝑗 ) ≥ 0 . (2.5) 

Also, the function 𝜙 is called strictly positive definite on ℝ 

𝑑 if the 
quadratic form (2.5) is zero only for 𝜆 = 0 . 

We interpolate a continuous function 𝑓 ∶ ℝ 

𝑑 ⟶ ℝ on a set 𝑋 = 

{ 𝑥 1 , … , 𝑥 𝑁 

} with choosing the radial basis function for 𝜙 ∶ ℝ 

𝑑 ⟶ ℝ 

that is radial in the sense that 𝜙( 𝑥 ) = Ψ( ‖𝑥 ‖) , where ‖. ‖ is the usual Eu- 
clidean norm on ℝ 

𝑑 as we will explain it in the next section. Now, we 
assume 𝜙 to be strictly positive definite, then the interpolation function 
has the following form [25,68] 

( 𝑓 ( 𝑥 )) = 

𝑁 ∑
𝑖 =1 

𝜆𝑖 𝜙( 𝑥 − 𝑥 𝑖 ) . (2.6) 

The basic problem is to find N unknown coefficients 𝜆i in which N in- 
terpolation conditions are to the following form [25,68] 

( 𝑓 ( 𝑥 𝑖 )) = 𝑓 𝑖 , 𝑖 = 1 , … , 𝑁. (2.7) 

It has proved that the interpolation matrix based on a strictly positive 
definite function is nonsingular [25,68] . In the following, we mention 
some strictly positive definite functions: 

1. Gaussian: 

𝜙( 𝑟 ) = exp 
(
− ( 𝑐𝑟 ) 2 

)
, (2.8) 

2. Linear generalized IMQ: 

𝜙( 𝑟 ) = 

2 − ( 𝑐𝑟 ) 2 (
1 + ( 𝑐𝑟 ) 2 

)4 . (2.9) 
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