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1. Introduction 

The method of fundamental solutions (MFS) is a meshfree method 

for solving partial differential equations (PDEs). Being based on point 

sources located outside the domain where the solution is sought and sat- 

isfying the underlying linear homogeneous PDE, the MFS is considered 

a Trefftz type method. Its mathematical justification was addressed for 

the first time more than fifty years ago by Kupradze and Alekside [15] , 

and among the first computational implementations we find the work of 

Oliveira [18] . In the following two decades, the MFS was readdressed 

in several reference papers, including, for instance, those by Mathon 

and Johnston [17] , devoted to the choice of basis functions, and Bo- 

gomolny [5] , treating the convergence analysis. The review articles by 

Fairweather and Karageorghis [9] or Golberg and Chen [11] contain a 

detailed introduction to the MFS. 

In the context of meshfree methods for partial differential equations, 

the MFS regained attention in the last decades, both in the applied 

mathematics and engineering communities. Its main advantage, as com- 

pared with finite differences and finite elements methods, is that it offers 

higher accuracy, under appropriate regularity assumptions, even though 

there is an extra cost due to the ill-conditioning nature of the resulting 

linear systems [6,7,12] . 

The original MFS was restricted to linear homogeneous boundary 

value problems described by  𝑢 = 0 , in a domain Ω ⊂ ℝ 

𝑑 , and  𝑢 = 𝑔, on 

𝜕Ω, where  denotes a (generic) elliptic differential operator with funda- 

mental solution, and  denotes a linear boundary operator. Several ways 

of extending the method to the case of nonhomogeneous source/force 

terms  𝑢 = 𝑓 have been developed in the last years. Such methods are 

mostly based on the construction of a particular solution u P , satisfy- 

ing  𝑢 𝑃 = 𝑓, and on solving, by the MFS, the homogeneous problem 

 𝑢 𝐻 = 0 with the boundary condition  𝑢 𝐻 = 𝑔 −  𝑢 𝑃 . Then, the solu- 
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tion of the original problem is just given by 𝑢 = 𝑢 𝑃 + 𝑢 𝐻 . In order to 

obtain u P , the so-called method of particular solutions can be applied, 

which consists in interpolation techniques, using radial basis functions 

(RBF), polynomials, splines, and other basis functions. 

The MFS has been applied to nonlinear problems together with the 

RBF method of particular solutions and Picard iteration in several pa- 

pers, e.g. [13,14,19,21,23] . Other possibilities to overcome some specific 

nonlinearities in functionally graded materials, include the use of the 

Kirchoff transformation to reduce the problem to a linear one, as done 

in [16] or in [10] . Another approach to handle the nonlinear terms is 

the use of the homotopy analysis method (HAM), instead of the Picard 

iteration scheme, as in [20,22] . 

The MFS-D, a domain-type method of fundamental solutions, was 

proposed in [3] (see also [1,2] ) for Poisson problems and consists in the 

use of Helmholtz fundamental solutions as basis functions. This idea was 

further implemented in [4] to avoid the separation in the homogeneous 

and particular solutions parts. However the application of the MFS-D to 

solve nonlinear PDEs was not addressed in previous publications. 

In this paper, we describe the main steps of an ongoing project de- 

voted to the application of the MFS-D to nonlinear PDEs where  = Δ
is the relevant linear operator. Here only the case of a nonlinearity 

of the form  =  ( 𝑢 ) is considered. In future works, the Picard itera- 

tion scheme will be tested to handle nonlinearities incorporating ∇ u as 

well. In Section 2 , we provide a justification of the iterative level of the 

method by means of the Banach fixed point Theorem. In Section 3 , we 

describe the implementation of MFS-D for each linear problem of the 

iterative process. We also propose a control of the error in the iterative 

process through a posteriori residual estimates, allowing a stopping cri- 

teria that is independent of the approximation restrictions forced by the 

MFS-D discretization. This is explained in Section 4 . In order to illus- 

trate the fast convergence, accuracy and small computational effort of 
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the described method, we consider, in Section 5 , two examples of non- 

linear elliptic equations for which we present numerical simulations in 

2D. 

2. A class of nonlinear elliptic PDEs 

Let Ω ⊂ ℝ 

𝑑 be a bounded domain with locally Lipschitz boundary Γ = 

𝜕Ω. Consider a second order nonlinear elliptic Dirichlet problem written 

in the form { 

Δ𝑢 −  ( 𝑢 ) = 𝑓, in Ω
𝑢 −  ( 𝑢 ) = 𝑔, on Γ (2.1) 

where the operator  describes the nonlinear part of the differen- 

tial equation, and  describes possible nonlinear boundary conditions. 

When  ≡ 0 ,  ≡ 0 , we recover the classical Poisson equation with 

source term f and Dirichlet boundary condition g . We assume the ex- 

istence of 𝑔̃ ∈ 𝐻 

1 (Ω) such that its trace on Γ is equal to g , 𝑢 |Γ = 𝑔, and 

conditions on  and  that ensure that the problem (2.1) has an unique 

solution in appropriate functional spaces. To simplify the presentation, 

we will consider just the Dirichlet problem with  ≡ 0 . Extensions to 

other type of boundary conditions, including nonlinearities, might be 

considered. 

2.1. Picard iteration 

In order to apply the MFS-D, we consider a Picard iteration scheme 

which leads to the resolution of a linear Poisson problem in each iter- 

ation step. More precisely, given an approximation u k we find the new 

iteration 𝑢 𝑘 +1 by solving the following Poisson problem { 

Δ𝑢 𝑘 +1 = 𝐹 𝑘 ∶=  ( 𝑢 𝑘 ) + 𝑓, in Ω, 
𝑢 𝑘 +1 = 𝑔, on Γ. (2.2) 

Under a smallness condition involving the data, this iteration procedure 

may converge to an unique solution u of problem (2.1) when k →∞, and 

this justifies the application of this fixed point method. 

The reduction to Poisson problems in each iteration is a way to con- 

vert the resolution of a nonlinear problem into a sequence of simpler 

linear problems. However, it should be noticed that also Helmholtz lin- 

ear problems could be considered in the iteration process. 

2.2. Contractivity and the fixed point theorem 

At each iteration step k we have to solve a Poisson problem { 

Δ𝑢 = 𝐹 𝑘 , in Ω
𝑢 = 𝑔, on Γ. (2.3) 

This linear problem (2.3) is well posed for each fixed g ∈H 

1/2 ( Γ), and 

we may introduce the operator 

Δ−1 
𝑔 

∶ 𝐹 ∈ 𝐻 

−1 (Ω) ↦ 𝑢 ∈ 𝐻 

1 (Ω) (2.4) 

where u stands for the (unique) solution of (2.3) , given F in the right 

hand side. The well posedness means that there is a constant 𝑀 Ω > 0 , 
that only depends on the domain Ω, such that the solution u verifies the 

elliptic estimate (see [8] ): 

‖𝑢 ‖𝐻 1 (Ω) ≤ 𝑀 Ω
(‖𝐹 ‖𝐻 −1 (Ω) + ‖𝑔‖𝐻 1∕2 (Γ) ). (2.5) 

We can write (2.2) as 𝑢 𝑘 +1 = Δ−1 
𝑔 
( 𝐹 𝑘 ) = Δ−1 

𝑔 
(  ( 𝑢 𝑘 ) + 𝑓 ) ∶=  ( 𝑢 𝑘 ) , with  

the iterated operator, defined in a subset of { 𝑢 ∈ 𝐻 

1 (Ω) ∶ 𝑢 |Γ = 𝑔} . 
In order to apply the Banach fixed point theorem to problem 𝑢 =  ( 𝑢 ) , 

and to conclude existence and uniqueness of the solution u of (2.1) along 

with the convergence of the Picard iterations (2.2) , specific conditions 

should be required for the operator  describing the nonlinearity and 

for the operator  . 

Theorem 1. Let  ⊆ { 𝑢 ∈ 𝐻 

1 (Ω) ∶ 𝑢 |Γ = 𝑔} be non empty and closed. Sup- 

pose that 

(i)  ∶  → 𝐻 

−1 (Ω) and there exists a constant L ≥ 0 such that ‖ ( 𝑢 ) −  ( 𝑣 ) ‖𝐻 −1 (Ω) ≤ 𝐿 ‖𝑢 − 𝑣 ‖𝐻 1 (Ω) , ∀𝑢, 𝑣 ∈  , (2.6) 

(ii)  ∶  → 𝐻 

1 (Ω) defined by  ( 𝑣 ) = Δ−1 
𝑔 
(  ( 𝑣 ) + 𝑓 ) satisfies  ( ) ⊆  , 

(iii) the constant M Ω in estimate (2.5) is such that K ≔M ΩL < 1 . 

Then the sequence { u k } of Picard iterations 𝑢 𝑘 +1 =  ( 𝑢 𝑘 ) converges to the 

unique solution 𝑢 ∈  of problem (2.1) , for arbitrary 𝑢 0 ∈  (in particular, 

when 𝑢 0 = 𝑔̃ ) . Moreover, the a posteriori error estimate 

||𝑢 − 𝑢 𝑘 ||𝐻 1 (Ω) ≤ 

𝐾 

1 − 𝐾 

||𝑢 𝑘 − 𝑢 𝑘 −1 ||𝐻 1 (Ω) (2.7) 

is valid. 

Proof. Under the stated conditions, the operator  is a contraction in 

 , because 

|| ( 𝑢 ) −  ( 𝑣 ) ||𝐻 1 (Ω) = ||Δ−1 
0 (  ( 𝑢 ) −  ( 𝑣 )) ||𝐻 1 (Ω) 

≤ 𝑀 Ω|| ( 𝑢 ) −  ( 𝑣 ) ||𝐻 −1 (Ω) 
≤ 𝑀 Ω𝐿 ||𝑢 − 𝑣 ||𝐻 1 (Ω) (2.8) 

and 𝐾 = 𝑀 Ω𝐿 < 1 . 
By the Banach fixed point Theorem (see, for instance, [8] ),  being 

a contraction and leaving the closed space  invariant, there is only a 

solution to 𝑢 =  ( 𝑢 ) and the sequence { u k } generated by 𝑢 𝑘 +1 =  ( 𝑢 𝑘 ) con- 

verges to u , given any 𝑢 0 ∈  . The estimate (2.7) is also a consequence 

of the Banach fixed point Theorem. □

Remark 2. The condition 𝐾 = 𝑀 Ω𝐿 < 1 that allows to prove the con- 

tractivity of the operator  may be rather heavy, and eventually be re- 

laxed. As our main goal is to present the application of the method, we 

will not get into further details on this theoretical aspect. 

Remark 3. The assumption on the initial condition 𝑢 0 = 𝑔 is not nec- 

essary, as long as 𝑢 𝑘 ∈  , for some 𝑘 ∈ ℕ 0 and this is a consequence of 

solving the Poisson problem (2.3) , since u k ∈H 

1 ( Ω) and 𝑢 𝑘 = 𝑔 on Γ. 

3. Description of the numerical method 

To solve each Poisson problem (2.3) , we consider the fundamental 

solutions Φ𝜆 of the Helmholtz equation, which satisfy 

ΔΦ𝜆 + 𝜆2 Φ𝜆 = − 𝛿, (3.1) 

here 𝛿 stands for the Dirac delta distribution. In the 2D case, these fun- 

damental solutions are given explicitly in terms of the Hänkel function 

(i stands for the imaginary unit) 

Φ𝜆( 𝑥 ) = 

i 
4 
𝐻 

(1) 
0 ( 𝜆||𝑥 ||) , (3.2) 

and when 𝜆 = 0 , it reduces to the fundamental solution of the Laplace 

equation 

Φ0 ( 𝑥 ) = 

1 
2 𝜋

log |𝑥 |. (3.3) 

Remark 4. The method can be extended to other dimensions, in partic- 

ular to 3D, by using the appropriate fundamental solution Φ𝜆( 𝑥 ) = 

𝑒 i 𝜆||𝑥 ||
4 𝜋||𝑥 ||

which also holds for 𝜆 = 0 . 

We emphasize that, since we are dealing with a nonhomogeneous 

PDE, the standard MFS is not applicable. However, the MFS can be 

extended, by using the above fundamental solutions of the Helmholtz 

equation to approximate the source terms F k . This is convenient because 

these fundamental solutions verify, for x ≠0, 

ΔΦ𝜆( 𝑥 ) = − 𝜆2 Φ𝜆( 𝑥 ) . (3.4) 

This method was introduced in [2] and it has been called the MFS-D. The 

MFS-D, like the standard MFS, uses a source set Γ̂ = 𝜕 ̂Ω, where Ω̂ ⊃ Ω
is a larger open set. Γ̂ acts as an artificial boundary and an interval of 

frequencies is also used to prove density of the linear combinations of 

Φ𝜆( 𝑥 − 𝑦 ) in H 

1 ( Ω). 
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