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a b s t r a c t 

In this paper, we extend the previous work of Chen et al. (Numer Methods Partial Differential Eq 21: 349–367, 

2005) on the two-step method of particular solutions (MPS) for solving the Poisson equation with an axisym- 

metric forcing term and boundary conditions in an axisymmetric geometry to general differential equations and 

time-dependent problems using the one-step MPS. Polynomial basis functions are sufficient for the proposed ap- 

proach instead of using Chebyshev polynomials. Furthermore, no boundary method is required for solving the 

homogeneous equation which is required in the two-step approach. In the solution process of the two-step MPS, 

we only require the closed form particular solution of the Laplacian or Helmholtz equation with respect to the 

monomial basis functions. The proposed approach is more simplified compared to the previous work and also 

allows us to solve a large class of partial differential equations including those with variable coefficients. We fur- 

ther extend the proposed approach to time-dependent problems using the Houbolt method, which is a third order 

time marching finite difference scheme. In the numerical implementation, we compare the results using reduced 

axisymmetric equations and the original 3D equations. Numerical results show the high simplicity, accuracy, and 

efficiency of the proposed numerical method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

During the past several decades, the traditional mesh-based methods 

such as the finite element method, finite difference method, and bound- 

ary element method have been fully developed for solving various types 

of problems in science and engineering. For higher dimensional prob- 

lems, one obstacle of implementing these methods is the tedious pro- 

cedure of meshing the domain and its boundary. When the geometry 

of the given 3D domain is axisymmetric, which is formed by rotating 

a 2D plane region about the z-axis, the procedure can be reduced to 

solving the axisymmetric version of the original equation. If the forc- 

ing term of the given differential equation and the boundary conditions 

are also axisymmetric, the given 3D problem reduces to a 2D problem 

in the radial coordinate r and the axial coordinate z . As a result, the 

mesh generation of the domain in 2D is much easier than its original 3D 

version. Various numerical techniques have been developed for solv- 

ing axisymmetric problems. Karageorghis [12,13] considered homoge- 

neous axisymmetric problems with axisymmetric and non-axisymmetric 

boundary conditions using the boundary method. In contrast, our pro- 

posed method can be applied for solving both homogeneous and non- 

homogeneous equations. In this paper, we only consider the forcing term 
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and boundary conditions to be both axisymmetric. Otherwise, a similar 

approach in [13] can be applied for a non-axisymmetric forcing term 

or boundary conditions. We would like to refer readers to References 

[14,15,20,21,24] and the references cited therein for further informa- 

tion of axisymmetric problems. 

In recent years, meshless methods have become very popular for 

solving various kinds of partial differential equations without the te- 

dious mesh generation. In this paper, we will consider applying meshless 

methods to further avoid the mesh generation. Meshless methods using 

radial basis functions (RBFs) are well known and have been successfully 

applied for solving various types of differential equations. However, be- 

cause the axisymmetric Laplacian equation does not have constant coef- 

ficients, the standard technique of RBF collocation methods can not be 

easily applied. Chen et al. [1] applied the two-step method of particular 

solutions (MPS) using polynomials as the basis functions. The closed- 

form particular solutions for monomial functions had been derived in 

this paper. Polynomials are notorious for being unstable due to the se- 

vere ill-conditioning of the resultant matrix. As a result, Chebyshev poly- 

nomials were employed as the basis functions to evaluate the particular 

solutions. In the solution process, each Chebyshev polynomial was ex- 

panded as the sum of a series of monomials and the particular solution 
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for each monomial term was then evaluated [25–28] . In the two-step 

MPS, after the particular solutions are evaluated, the given problem is 

reduced to a homogeneous problem. A boundary method, such as the 

method of fundamental solutions (MFS) [4,5,7,10,16] , is required to 

solve the remaining homogeneous problem. As such, the fundamental 

solution, which is available only for certain linear differential operators, 

is normally required. In [1] , only the Poisson equation is considered. 

In [21] , closed-form particular solutions for Helmholtz-type equations 

were derived, but no numerical implementation was conducted. Tsai 

et al. [24] extended the results in [1] to the polyharmonic and poly- 

Helmholtz equations using the two-step MPS. 

In [2,3,30] , the one-step MPS has been proposed for solving various 

types of partial differential equations including those with variable co- 

efficients using RBFs. In recent years, the new approach of the MPS has 

further extended for solving challenging problems [8,9,31] . However, 

the closed-form particular solutions for axisymmetric equations using 

RBFs are not available. In this paper, we propose using the one-step 

MPS with polynomial basis functions for solving axisymmetric problems 

including equations with variable coefficients. For comparison reasons, 

we also apply this method for solving 3D problems directly [6,17] . We 

then compare the numerical results of these two approaches. To alle- 

viate the difficulty of severe ill-conditioning of polynomial functions, 

the multiple scale technique [18,19] is employed to reduce the condi- 

tion number. Unlike the two-step MPS using the Chebyshev polynomial 

and the MFS, the proposed one-step MPS is simple to implement. Fur- 

thermore, the proposed method is applicable to a large class of partial 

differential equations. 

After solving Helmholtz-type equations, we extend the proposed 

method to axisymmetric time-dependent problems. The Houbolt method 

[11,23,29] , which is a third order finite difference time marching 

scheme, is used to transform the time-dependent problem into a series 

of inhomogeneous modified Helmholtz equations. Using the above men- 

tioned two-step MPS, we can obtain the solution at each time step. 

The paper is organized as follows. In Section 2 , we present the for- 

mulation of the one-step MPS for axisymmetric problems. In Section 3 , 

we give a brief review of the MPS for solving 3D problems directly. The 

multiple scale method is presented in Section 4 as a preconditioner to 

reduce the condition number of the resultant matrices due to the uses of 

high order polynomial basis functions. In Section 5 , we present how to 

convert the heat equation to the modified axisymmetric Helmholtz equa- 

tion by the Houbolt method. In Section 6 , three numerical examples are 

given to show the effectiveness of the proposed approaches. Finally, we 

present the advantages and disadvantages of the proposed approach as 

well as some conclusions and ideas for future work in Section 7 . 

2. The MPS for axisymmetric problems 

In this paper, we first consider the following modified Helmholtz 

equation 

Δ𝑢 ( 𝑥, 𝑦, 𝑧 ) − 𝜆2 𝑢 ( 𝑥, 𝑦, 𝑧 ) = 𝑓 ( 𝑥, 𝑦, 𝑧 ) , ( 𝑥, 𝑦, 𝑧 ) ∈ Ω, (1) 

𝐵𝑢 ( 𝑥, 𝑦, 𝑧 ) = 𝑔( 𝑥, 𝑦, 𝑧 ) , ( 𝑥, 𝑦, 𝑧 ) ∈ 𝜕 Ω, (2) 

where Δ is the Laplacian, B the boundary operator, 𝜆 a positive constant, 

and Ω a bounded and connected domain with boundary 𝜕Ω, which we 

assume to be piecewise smooth. f and g are given smooth functions. 

If the domain Ω, the forcing term f , and the boundary conditions g are 

axisymmetric, then the 3D problem (1) and (2) can be reduced to solv- 

ing the following 2D axisymmetric version of the modified Helmholtz 

equation (
 − 𝜆2 

)
𝑢 ( 𝑟, 𝑧 ) = 𝑓 ( 𝑟, 𝑧 ) , ( 𝑟, 𝑧 ) ∈ 𝐷, (3) 

𝐵𝑢 ( 𝑟, 𝑧 ) = �̂� ( 𝑟, 𝑧 ) , ( 𝑟, 𝑧 ) ∈ 𝜕𝐷, (4) 

where 

 = 

𝜕 2 

𝜕𝑟 2 
+ 

1 
𝑟 

𝜕 

𝜕𝑟 
+ 

𝜕 2 

𝜕𝑧 2 
. (5) 

As mentioned in the previous section, RBF collocation methods are 

not suitable for solving axisymmetric problems. Due to the new develop- 

ment of the one-step MPS [2,3,30] , the solution procedure has been ex- 

tended for solving more general differential equations and is also much 

simpler than the two-step MPS. 

The key step of the MPS is the derivation of the particular solution 

with respect to the given differential equation and basis functions. Con- 

sider the following axisymmetric equation (
 − 𝜆2 𝐼 

)
Ψ( 𝑟, 𝑧 ) = 𝑟 𝑘 𝑧 𝑚 , (6) 

where k ≥ 0 and m ≥ 0 are integers, and I is the identity operator. In [21] , 

the closed-form particular solution, Ψ( r, z ), has been derived as follows 

Ψ( 𝑟, 𝑧 ) = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
−(2 𝑠 )!! 2 𝑚 ! 

𝑠 ∑
𝑖 =0 

[ 𝐵∕2] ∑
𝑗=0 

( 𝑖 + 𝑗)! 𝑟 2 𝑠 −2 𝑖 𝑧 𝑚 −2 𝑗 

(2 𝑠 − 2 𝑖 )!! 2 ( 𝑚 − 2 𝑗 )! 𝑖 ! 𝑗 ! 𝜆𝑖 + 𝑗+1 
, 𝑘 = 2 𝑠, 

(2 𝑠 + 1)!! 2 𝑚 ! 
∞∑
𝑖 =0 

[ 𝐵∕2] ∑
𝑗=0 

(−1)( 𝑖 + 𝑗)! 𝜆𝑖 𝑟 2 𝑠 +2 𝑖 +2 𝑗+3 𝑧 𝑚 −2 𝑗 

(2 𝑠 + 2 𝑖 + 2 𝑗+ 3)!! 2 ( 𝑚 − 2 𝑗 )! 𝑖 ! 𝑗 ! 
, 𝑘 = 2 𝑠 + 1 , 

(7) 

where [ x ] is the largest integer less than or equal to x , and 0!! = 1 , 1!! = 

1 , 2!! = 2 , and 

𝑖 !! = 

{ 

2 ⋅ 4 ⋅ 6 … 𝑖, if 𝑖 is an even positive integer , ( 𝑖 > 2) , 
1 ⋅ 3 ⋅ 5 … 𝑖, if 𝑖 is an odd positive integer , ( 𝑖 > 1) . 

Note that Ψ( r, z ) in (7) is too tedious for the numerical implementation. 

Instead, as shown in [1] , we can consider the following closed-form 

particular solution of the axisymmetric Poisson equation 

 Φ( 𝑟, 𝑧 ) = 𝑟 𝑘 𝑧 𝑚 , (8) 

where 

Φ( 𝑟, 𝑧 ) = 

[ 𝑚 ∕2] ∑
𝑙=0 

(−1) 𝑙 𝑚 ! 
( 𝑚 − 2 𝑙)! 

( 

𝑘 !! 
( 𝑘 + 2 𝑙 + 2)!! 

) 2 
𝑟 𝑘 +2 𝑙+2 𝑧 𝑚 −2 𝑙 . (9) 

It is also known that the polynomial basis with degree ≤ s in 2D can 

be written as 

𝑃 𝑠 = 

{
𝑟 𝑘 − 𝑚 𝑧 𝑚 ∶ 0 ≤ 𝑚 ≤ 𝑘, 0 ≤ 𝑘 ≤ 𝑠 

}
= 

{
1 , 𝑟, 𝑧, 𝑟 2 , 𝑟𝑧, 𝑧 2 , … , 𝑟 𝑠 , 𝑟 𝑠 −1 𝑧, 𝑟 𝑠 −2 𝑧 2 , … , 𝑟𝑧 𝑠 −1 , 𝑧 𝑠 

}
. 

Note that 𝐿 = ( 𝑠 + 1)( 𝑠 + 2)∕2 is the number of polynomial basis func- 

tions in P s . In the one-step MPS, we assume that the solution of (3) and 

(4) can be represented by 

𝑢 ( 𝑟, 𝑧 ) ≈ �̃� ( 𝑟, 𝑧 ) = 

𝑠 ∑
𝑖 =0 

𝑖 ∑
𝑗=0 

𝛼𝑖𝑗 Φ𝑖𝑗 ( 𝑟, 𝑧 ) , (10) 

where 

 Φ𝑖𝑗 ( 𝑟, 𝑧 ) = 𝑟 𝑖 − 𝑗 𝑧 𝑗 , 0 ≤ 𝑗 ≤ 𝑖, 0 ≤ 𝑖 ≤ 𝑠. (11) 

Let {( 𝑟 𝑖 , 𝑧 𝑖 )} 
𝑛 𝑖 
𝑖 =1 be the interior points in D and {( 𝑟 𝑖 , 𝑧 𝑖 )} 𝑛 𝑖 = 𝑛 𝑖 +1 be the 

boundary points on 𝜕D . Applying (10) to (3) and (4) , we have 

𝑠 ∑
𝑖 =0 

𝑖 ∑
𝑗=0 

𝛼𝑖𝑗 

(
𝑟 
𝑖 − 𝑗 
𝑘 
𝑧 
𝑗 

𝑘 
− 𝜆2 Φ𝑖𝑗 ( 𝑟 𝑘 , 𝑧 𝑘 ) 

)
= 𝑓 ( 𝑟 𝑘 , 𝑧 𝑘 ) , 𝑘 = 1 , 2 , … , 𝑛 𝑖 , (12) 

𝑠 ∑
𝑖 =0 

𝑖 ∑
𝑗=0 

𝛼𝑖𝑗 𝐵Φ𝑖𝑗 ( 𝑟 𝑘 , 𝑧 𝑘 ) = �̂� ( 𝑟 𝑘 , 𝑧 𝑘 ) , 𝑘 = 𝑛 𝑖 + 1 , … , 𝑛. (13) 

The above system of equations contains L coefficients to be determined. 

The number of collocation points n should be chosen larger than L . Once 

{ 𝛼ij } is determined, the approximate solution �̃� at any point inside the 

domain can be obtained by (10) . 
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