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a b s t r a c t 

In this article, the MLPG method is applied to the generalized linear coupled thermoelectricity equations. Lord–

Shulman modification with a relaxation time parameter is used in the hyperbolic heat conduction equations. A 

new linear test function which is zero on the boundaries of local test domains is introduced. The test function 

and its partial derivatives are determined by an exponential RBF approximation method. The approximation of 

test function and main variables are similar. For the construction of shape functions, neighbors of every point 

are determined based on the definition of the closest adjacent point pattern. Consequently, test function space 

becomes independent of trial function space. Direct interpolation method and penalty parameter are used to 

impose essential boundary conditions. The selection of appropriate parameters are demonstrated in two numerical 

examples. The small number of used points is the advantage of this method over the FEM that is shown in several 

examples. The accuracy of results is compared between the meshless method and different analytical and FE 

solutions. The effect of the relaxation time on SIF under thermal shock is discussed in a separate example. The 

comparison of meshless results with various examples shows that employed method is accurate and reliable. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Although analytical methods provide closed-form solutions for engi- 

neering problems, there is much computational and mathematical com- 

plexity in such solutions. Thus in order to reach more efficient and 

general solutions, numerical methods like finite element method [1] or 

boundary element method [2,3] are required. Until now, the extended 

finite element method [1,2,4,5] has been widely used as a powerful nu- 

merical method of diverse problems like crack growth [5] , stationary 

crack analysis under dynamic or static loads [1,4] and transient analysis 

of cracked magnetoelectroelastic solids under coupled electro-magneto- 

mechanical loading [6] . The conventional form of FE methods encoun- 

ters some difficulties in problems in which remeshing is required, large 

deformations with high distortions of the mesh exist or crack propa- 

gates. Furthermore, the accuracy of the numerical solution depends on 

the meshing quality. To overcome these problems, the meshless methods 

appeared since the late of 90s, and now they are developing in differ- 

ent branches of science, especially mechanical engineering. However, 

the use of these methods may be challenging due to the mathematical 

complexities and being time-consuming compared with the finite ele- 

ment method. These methods are free of any mesh and only need some 

scattered points in the configurations [7–10] . In past years, many re- 

searchers applied meshless methods to different engineering problems. 
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For example, Tanaka et al. [11,12] used a novel meshfree discretiza- 

tion technique in terms of the reproducing kernel particle method for 

evaluating mixed-mode SIFs of cracked plates. They employed enriched 

basis functions for approximation and Voronoi meshing for numerical 

integration. Nguyen et al. [13] presented extended meshfree Galerkin 

method based on local partition of unity for modeling of crack growth. 

They used radial point interpolation method (RPIM) with enriched ba- 

sis functions for generating the TPS shape functions. Bui et al. [14] used 

meshfree moving Kriging interpolation method to analyze the natural 

frequencies of laminated composite plates. Bui et al. [15] numerically 

analyzed the transient dynamic SIFs of cracked FGMs by extended mesh- 

free methods and extended moving Kriging shape functions. They cal- 

culated SIFs by interaction integral method and compared their results 

with analytical method, XFEM and boundary element ones. Sadamoto 

et al. [16] studied the buckling of cylindrical shells and calculated the 

critical buckling loads and their mode shapes by the meshfree repro- 

ducing kernel method. Hosseini [17] used a meshless method based on 

the generalized finite difference method for generalized coupled ther- 

moelasticity analysis based on the Green–Naghdi (GN) theory [18] . Dif- 

ferent classification can be considered for meshless methods based on 

the formulation (global or local), weak form or strong form of the gov- 

erning equations, type of test functions, approximation method for con- 

struction of shape functions and method of enforcing essential boundary 
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conditions. The meshless methods which are based on global formula- 

tion are not completely meshfree in fact. This means that to calculate 

the integrals in the weak form a background mesh is required like [11] . 

Of course, Racz and Bui [19] proposed an adaptive numerical integra- 

tion method based on mapping techniques for solving domain integra- 

tions. Their method maps complex domains to simpler ones applicable 

to both global and local weak forms. This method is useful but needs 

some additional calculations of mapping process and a CAD program. 

Additionally, more calculation time is required. Local meshfree methods 

such as Petrov-Galerkin method do not need background mesh because 

of their local nature, nevertheless, the idea of using background mesh is 

feasible. 

In this paper, the weak form meshfree method of local Petrov–

Galerkin (MLPG) is applied to the generalized (hyperbolic) coupled 

linear thermoelectricity governing equations based on Lord–Shulman 

method with one time lag parameter. Some researchers studied this 

area by methods rather than meshless method. For example, Alibei- 

gloo [20] analytically studied the time-dependent response of sandwich 

plates with FGM core under thermal shock by using generalized cou- 

pled thermoelasticity based on the Lord–Shulman formulation. He used 

Laplace and Fourier transformations. Heidarpour and Aghdam [21] used 

differential quadrature method (DQM) to analysis transient response of 

FGM shells under thermal shock load based on the Lord–Shulman model. 

Gau and Wang [22] analytically studied the thermal shock fracture of 

penny-shaped crack based on non-Fourier heat conduction theory by 

Laplace transform method. Chen and Hu in [23] analytically studied the 

response of a cracked substrate bonded to a coating using the hyperbolic 

heat conduction theory and employed Laplace and Fourier transforms. 

Hosseini et al. used MLPG method in [24] and presented an analytical 

solution in [25] to study coupled thermoelasticity analysis of FG thick 

hollow cylinder under thermal shock based on GN theory. Furthermore, 

thermomechanical and shock loads have been studied in [26,27] by 

FEM. Liu et al. [26] studied stationary cracks in FG piezoelectric mate- 

rials (FGPMs) based on the X-FEM under both cooling and heating ther- 

mal shocks. They compared FEM results with MLPG ones. Nguyen et al. 

[27] simulated dynamic and static thermoelastic fracture by extended 

nodal gradient FE method. In addition, they investigated the simulation 

of quasi-static crack propagation in complex geometries under thermo- 

mechanical loading. But, the novelty of this article compared with the 

mentioned articles is applying MLPG method to the generalized form of 

the coupled linear thermoelectricity governing equations based on the 

LS model and considering the second sound effect. The results of nu- 

merical investigations of cracked homogenous and FG materials under 

various time-dependent and time independent thermal and mechanical 

loads are compared with reference numerical and analytical ones. Thus, 

the discrete form of the non-Fourier thermoelasticity equations is de- 

termined based on the MLPG method and general forms of the mass 

matrix, damping matrix and stiffness matrix and the force vector are 

derived. The selection of appropriate parameters of exponential shape 

function and penalty parameter, numerical integration procedure, the 

new method of construction of test function based on RBF approxima- 

tion are explained in details. To evaluate the accuracy of the numerical 

method, various examples are presented. To calculate the stress intensity 

factors, the equivalent domain form of J-integral, interaction integral 

[28–30] , are used. 

Table 1 

RBF definition. 

Name Expression Parameter 

Gaussian (EXP) 𝑅 𝑖 ( 𝒙 ) = exp ( − 𝑐 2 𝑟 2 𝑖 ) 𝑐 = 
√
𝛼∕( 

√
𝐴 ∕ 

√
𝑛 − 1 ) 

This work is structured as follows. After the introduction, the shape 

function approximation method and the appropriate parameter selec- 

tion are explained in the second section. Afterwards, the generation of 

shape functions and the method of neighbor points allocation is pre- 

sented in the third section. It is required to enforce discontinuities aris- 

ing from the crack on the shape functions. This is discussed in the fourth 

section. Next, in the fifth section, the discretization procedure of the 

governing equations is presented. Afterwards, the enforcement of the es- 

sential boundary conditions and the procedure of numerical integration 

are discussed in the sixth and seventh sections, respectively. The calcu- 

lation of the SIFs by interaction integral method and necessary details 

about it are given in the eighth and ninth sections. Numerical results 

are presented in the tenth section and they are compared with different 

analytical and FEM results. In this section, the effect of the relaxation 

time parameter on the SIFs is investigated under thermal shock loads. 

Finally, some conclusions are given in the eleventh section. 

2. Interpolation/Approximation 

Meshfree methods are based on approximating variables (for exam- 

ple, u ) in the scattered points by their adjacent points without any mesh. 

u may be each of displacement components in three directions of an or- 

thogonal coordinate system, temperature or any other engineering vari- 

able. For the approximation of such these variables at an arbitrary point 

x , Eq. (1) is used: 

𝑢 = 𝝓�̂� (1) 

In which 𝝓(1 × n ) is the row vector of shape functions and �̂� ( 𝑛 × 1 ) is 

the unknown column vector of nodal values of the neighbor points. n 

is the number of neighbor points within the support domain of point x . 

The procedure of shape function construction includes different types in 

meshless methods. Two of the most common methods are the moving 

least squares and the radial basis functions (RBFs). In this paper, we use 

the radial basis functions. To get into Eq. (1) , first the interpolation is 

defined as below [31] : 

𝑢 ( 𝒙 ) = 

𝑛 ∑
𝑖 =1 

𝑅 𝑖 ( 𝒙 ) 𝑎 𝑖 + 

𝑚 ∑
𝑗=1 

𝑝 𝑗 ( 𝒙 ) 𝑏 𝑗 = 𝑹 

𝑻 ( 𝒙 ) 𝒂 + 𝒑 𝑻 ( 𝒙 ) 𝒃 (2) 

R is the radial basis function vector; P is the monomials ’ vector; a and 

b are unknown vectors. m is the number of polynomial basis functions. 

If m = 0 is selected, it is called classical RBFs and if P is not empty, it is 

called the enriched RBF. R is expressed as below: 

𝑅 𝑖 ( 𝒙 ) = 𝑓 
(
𝑟 𝑖 
)
= 𝑓 

( √ (
𝑥 − 𝑥 𝑖 

)2 + 

(
𝑦 − 𝑦 𝑖 

)2 ) 

(3) 

This means that each radial function is described as a function of 

the radial distance between the selected point and its adjacent points. 

In this paper, exponential RBF is used as described in Table 1 [31] : 

In the above relations, 𝑟 𝑖 = 

√ 

( 𝑥 − 𝑥 𝑖 ) 2 + ( 𝑦 − 𝑦 𝑖 ) 2 and 𝛼 is the shape 

parameter. A is local interpolation area containing adjacent points. In 

this study, reasonable results have been observed for values of 𝛼 between 

2 and 3. For all numerical examples, 𝛼 = 2.5 has been used. Other RBFs 

such as TPS, MQ, and CSRBF are also available for interpolation. For 

more details, references [31] are recommended. 

In two dimensional space, P is expressed based on the value of m as 

follows [32] : 

𝒑 = 

{
1 𝑥 𝑦 

}𝑇 
𝑚 = 3 , first order 

𝒑 = 

{
1 𝑥 𝑦 𝑥 2 xy 𝑦 2 

}𝑇 
𝑚 = 6 , second order 

In 2D problems, to stabilize RBFs and approximate the possible linear 

space appropriately, using first order monomials with m = 3 has been 

recommended. Therefore, in this paper m = 3 is taken. 

To find the unknowns a and b and to determine 𝝓, the interpolation 

has to be applied to all n points within the support domain of x . In this 

order, the following relations are obtained [31] : 

�̂� = 𝑹 0 𝒂 + 𝒑 𝒎 𝒃 (4) 

48 



Download English Version:

https://daneshyari.com/en/article/6924999

Download Persian Version:

https://daneshyari.com/article/6924999

Daneshyari.com

https://daneshyari.com/en/article/6924999
https://daneshyari.com/article/6924999
https://daneshyari.com

