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a b s t r a c t 

In this study, a simulation of an anomalous mobile–immobile transport process in complex systems is produced 

numerically. The process is mathematically described as a two-dimensional time-fractional mobile–immobile 

advection–diffusion equation in Coimbra variable order derivative sense. A local weak form meshless method 

combined with a time stepping approach is discussed and implemented to simulate the model. For this purpose, 

firstly, an implicit difference stepping method is used to semi-discretize the model in time direction. For full 

discretization, a set of regularly distributed nodes is created in the primary spatial domain and the local radial 

point interpolation method is used to construct the spatial shape functions on the distributed data-sites. Then an 

efficient meshless procedure based on combination of local Petrov–Galerkin method and collocation technique 

is formulated to treat in the interior and on the boundary of the primal spatial domain, respectively. Finally, 

some benchmark problems are presented on regular and irregular domains to verify the validity, efficiency and 

accuracy of the method. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In recent decades fractional calculus has been expanded by scientists 

as a generalization of classical calculus [1] . Because many of the compli- 

cated and anomalous phenomena in physics, chemistry, mechanics and 

other fields of science and engineering could be successfully described 

by using the theory of fractional calculus, it has attracted the great at- 

tention as an important and powerful mathematical tool to model the 

anomalous natural phenomena [2–4] . The great advantage of using the 

theory of fractional calculus for modeling is that the hereditary and in- 

herent memory properties of several materials and complex dynamic 

processes can be appropriately described by them. Nevertheless, some 

recent experimental results and new finding indicate that many practical 

anomalous processes exhibit inherent properties that change in time or 

space directions. Fortunately, according to the theory of fractional calcu- 

lus, the fractional models can be generalized as variable order fractional 

problems [5] . 

In the current work a two-dimensional variable order time fractional 

mobile–immobile advection–diffusion model: 

𝛽1 
𝜕 

𝜕𝑡 
𝑢 ( 𝐱, 𝑡 ) + 𝛽2 𝐷 

𝛼( 𝐱 ,𝑡 ) 
𝑡 

𝑢 ( 𝐱, 𝑡 ) = − 𝛖. ∇ 𝑢 ( 𝐱, 𝑡 ) + 𝐷Δ𝑢 ( 𝐱, 𝑡 ) + 𝜓( 𝐱, 𝑡 ) , 

( 𝐱, 𝑡 ) ∈ Ω × (0 , ∞) , (1.1) 
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with the following initial and Dirichlet boundary conditions 

𝑢 ( 𝐱, 0) = 𝜑 ( 𝐱) , 𝐱 ∈ Ω = Ω ∪ 𝜕Ω, 

𝑢 ( 𝐱, 𝑡 ) = 𝜌( 𝐱, 𝑡 ) , 𝐱 ∈ 𝜕Ω, 𝑡 ≥ 0 , (1.2) 

is investigated numerically. Where, u ( x , t ) is unknown function should 

be determined, Ω ⊂ ℝ 

2 is spatial domain with the smooth boundary 𝜕Ω, 

∇( . ) = ( 𝜕 ( . )∕ 𝜕 𝑥, 𝜕 ( . )∕ 𝜕 𝑦 ) denotes the gradient differential operator and 

Δ( . ) = ∇( . ) . ∇( . ) is the Laplacian operator. Also 𝛽1 and 𝛽2 are two non- 

negative constants, 𝛖 = ( 𝑣 𝑥 , 𝑣 𝑦 ) denotes the advection coefficient vector 

and D is the diffusion coefficient. Moreover 𝜓( x , t ), 𝜌( x , t ) and 𝜑 ( x ) are 

given sufficiently smooth functions. Also 𝐷 

𝛼( 𝐱 ,𝑡 ) 
𝑡 

denotes the Coimbra 

variable-order derivative operator of order 𝛼( x , t ) (0 < 𝛼( x , t ) < 1) with 

respect to t which is defined as [6] : 

𝐷 

𝛼( 𝐱 ,𝑡 ) 
𝑡 

𝑢 ( 𝐱, 𝑡 ) = 

1 
Γ(1 − 𝛼( 𝐱, 𝑡 )) ∫

𝑡 

0 + 
( 𝑡 − 𝜂) − 𝛼( 𝐱,𝑡 ) 𝜕 𝑢 ( 𝐱, 𝜂) 

𝜕 𝜂
𝑑𝜂

+ 

( 𝑢 ( 𝐱, 𝑡 0 + ) − 𝑢 ( 𝐱, 𝑡 0 − )) 𝑡 − 𝛼( 𝐱,𝑡 ) 

Γ(1 − 𝛼( 𝐱, 𝑡 )) 
, 

where Γ(.) is the gamma function. The mobile–immobile advection–

diffusion model is a common mathematical tool for describing the ran- 

dom motion of particles suspended in a liquid or a gas that known as 

Browning motion. Therefore, the advection–diffusion equation is widely 
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used to describe and model many phenomena in chemical, physical engi- 

neering and earth sciences such as solute transport in rivers, groundwa- 

ter and ocean currents [7–9] . In recent years, some of the computational 

techniques have been developed and employed to simulate the anoma- 

lous mobile–immobile transport process. Liu and et al. numerically in- 

vestigated the mobile–immobile advection–dispersion model with Ca- 

puto constant order time fractional derivative [10–12] . Zhang et al. 

[13] introduced a mobile–immobile advection–dispersion model with 

the Coimbra variable time fractional derivative for describing an anoma- 

lous transport model in one-dimensional. They proposed and employed 

an implicit discretization scheme to investigate the model numerically. 

Ma and Yang in [14] developed a Jacobi spectral collocation method 

for solving a variable-order time fractional mobile–immobile advection–

dispersion solute transport model. An implicit Crank–Nicolson finite dif- 

ference scheme has been formulated and used to solve model [15] . Jiang 

and Liu in [16] developed and implemented a computational technique 

based on reproducing kernel collocation method for simulating the 

variable-order time fractional mobile–immobile advection–dispersion 

equation. Very recently, Tayebi et al. [17] , employed a meshless nu- 

merical method based on the combination of finite difference scheme 

and moving least squares approximation for solving two-dimensional 

variable-order time fractional advection–diffusion equation. 

Meshless methods based on the radial basis functions (RBFs) [18] are 

one of the most efficient and powerful class of computational tech- 

niques to numerically solve practical engineering problems [19–21] . In 

recent years, more and more attention has been paid to the meshless 

numerical techniques based on the RBFs due to their high flexibility 

and good performance to deal with practical high dimensional mod- 

els with complicated and irregular domains. Various types of meshless 

methods based on the RBFs have been introduced and developed, al- 

though they are commonly classified into two main categories: meshfree 

techniques based on the strong form of governing mathematical models 

[22–28] and meshfree techniques based on the weak form of govern- 

ing mathematical models [29–35] . Recently, meshless methods based 

on the radial basis functions in both classes have been developed and 

widely used for numerically solving various types of constant and vari- 

able order fractional differential equations. Chen et al in [36] employed 

a meshless method based on the unsymmetric RBF collocation method 

to solve a fractional diffusion problem in two dimensional. A numerical 

method based on the combination of implicit finite difference scheme 

and RBF collocation method has been formulated and used for solving a 

time fractional diffusion equations [37] . Hosseini et al. implemented a 

RBF collocation method coupled with a time stepping scheme for numer- 

ically solving a classical type of time-fractional telegraph equation [38] . 

In [39] , a numerical technique based on the radial basis functions is for- 

mulated an employed to simulate a fractal mobile–immobile transport 

model. In [40] , a radial basis function meshless collocation method has 

been implemented to deal with a space-fractional advection–dispersion 

equations, which describes an anomalous solute transport process. Also, 

in [41] the method of approximate particular solutions using the ra- 

dial basis functions has been used to investigate the fractional diffusion 

problem with constant and variable order time fractional derivatives. 

Recently, some of the RBFs meshless techniques in both strong and weak 

forms have been developed and used by Dehghan et.al, to solve various 

kinds of fractional differential equations [42–45] . Roohani Ghehsareh 

et al. in [46] and [47] formulated and implemented a RBF collocation 

method and a RBF meshless technique based the local Petrov–Galerkin 

approach to solve the two-dimensional fractional evolution and time 

fractional cable equations, respectively. Recently, Shivanian et al. de- 

veloped a spectral meshless radial point interpolation (SMRPI) method 

for solving fractional problems [48–51] . 

In the current work, an implicit time discretization scheme combined 

with an efficient RBf meshless method based on the local weak form of 

the governing mathematical problems (1.1) and (1.2) would be formu- 

lated and implemented for solving the model. 

2. Time discretization procedure 

Here, an accurate implicit time stepping procedure is formulated to 

discretize the governing fractional model (1.1) in time direction. For 

this purpose, firstly, the time interval [0, T ] is partitioned into M equal 

sub-intervals 
⋃𝑀−1 
𝑛 =0 [ 𝑡 

𝑛 , 𝑡 𝑛 +1 ] , uniformly, where 𝑡 𝑛 = 𝑛𝜏, 𝑛 = 0 , … , 𝑀 and 

𝜏 = 𝑇 ∕ 𝑀, denotes the time step size. So clearly the governing Eq. (1.1) is 

hold at any time level 𝑡 𝑛 +1 , as follows: 

𝛽1 
𝜕 

𝜕𝑡 
𝑢 ( 𝐱, 𝑡 𝑛 +1 ) + 𝛽2 𝐷 

𝛼( 𝐱 ,𝑡 𝑛 +1 ) 
𝑡 

𝑢 ( 𝐱, 𝑡 𝑛 +1 ) 

= −( 𝑣 𝑥 , 𝑣 𝑦 ) . ∇ 𝑢 ( 𝐱, 𝑡 𝑛 +1 ) + 𝐷Δ𝑢 ( 𝐱, 𝑡 𝑛 +1 ) + 𝜓( 𝐱, 𝑡 𝑛 +1 ) . (2.3) 

The time integer derivative 𝜕 
𝜕𝑡 
𝑢 ( 𝐱, 𝑡 ( 𝑛 +1) ) can be discretized at three se- 

quential time levels 𝑛 + 1 , n and 𝑛 − 1 as follows: 

𝜕𝑢 

𝜕𝑡 
( 𝐱, 𝑡 ( 𝑛 +1) ) = 

3 𝑢 𝑛 +1 − 4 𝑢 𝑛 + 𝑢 𝑛 −1 

2 𝜏
+ 𝑅 

𝑛 +1 
1 , (2.4) 

where 𝑢 𝑛 = 𝑢 ( 𝐱, 𝑡 𝑛 ) . Also, 𝑅 

𝑛 +1 
1 denotes the truncation error that is 

bounded by |𝑅 

𝑛 +1 
1 | ≤ 𝐶𝜏2 (2.5) 

Moreover, for u (., .) ∈C 

2 ( Ω× (0, ∞)), the Coimbra variable-order deriva- 

tive 𝐷 

𝛼( 𝐱 ,𝑡 𝑛 +1 ) 
𝑡 

𝑢 ( 𝐱, 𝑡 𝑛 +1 ) can be approximated by the following partition- 

ing: 

𝐷 

𝛼( 𝐱 ,𝑡 𝑛 +1 ) 
𝑡 

𝑢 ( 𝐱, 𝑡 𝑛 +1 ) 

= 

1 
Γ(1 − 𝛼( 𝐱, 𝑡 𝑛 +1 )) ∫

𝑡 𝑛 +1 

0 + 
( 𝑡 𝑛 +1 − 𝜂) − 𝛼( 𝐱,𝑡 𝑛 +1 ) 𝜕 𝑢 ( 𝐱, 𝜂) 

𝜕 𝜂
𝑑𝜂

= 

1 
Γ(1 − 𝛼( 𝐱, 𝑡 𝑛 +1 )) 

𝑛 ∑
𝑗=0 

∫
( 𝑗+1) 𝜏

𝑗𝜏

( 𝑡 𝑛 +1 − 𝜂) − 𝛼( 𝐱,𝑡 𝑛 +1 ) 𝜕 𝑢 ( 𝐱, 𝜂) 
𝜕 𝜂

𝑑𝜂

= 

1 
Γ(1 − 𝛼( 𝐱, 𝑡 𝑛 +1 )) 

𝑛 ∑
𝑗=0 

( 

𝑢 𝑗+1 − 𝑢 𝑗 

𝜏
+ 𝑂( 𝜏) 

) 

∫
( 𝑗+1) 𝜏

𝑗𝜏

( 𝑡 𝑛 +1 − 𝜂) − 𝛼( 𝐱,𝑡 𝑛 +1 ) 𝑑𝜂, 

moreover, we have, 

∫
( 𝑗+1) 𝜏

𝑗𝜏

( 𝑡 𝑛 +1 − 𝜂) − 𝛼( 𝐱,𝑡 𝑛 +1 ) 𝑑𝜂

= 

𝜏1− 𝛼( 𝐱,𝑡 
𝑛 +1 ) 

1 − 𝛼( 𝐱, 𝑡 𝑛 +1 ) 
[
( 𝑛 − 𝑗 + 1) 1− 𝛼( 𝐱,𝑡 𝑛 +1 ) − ( 𝑛 − 𝑗) 1− 𝛼( 𝐱,𝑡 𝑛 +1 ) 

]
. 

So the following relation is obtained after rearranging: 

𝐷 

𝛼( 𝐱 ,𝑡 𝑛 +1 ) 
𝑡 

𝑢 ( 𝐱 , 𝑡 𝑛 +1 ) = 

𝜏− 𝛼( 𝐱,𝑡 
𝑛 +1 ) 

Γ(2 − 𝛼( 𝐱 , 𝑡 𝑛 +1 )) 

𝑛 ∑
𝑗=0 

( 𝑢 𝑛 − 𝑗+1 − 𝑢 𝑛 − 𝑗 ) 𝜔 𝑛 +1 
𝑗 

+ 𝑂( 𝜏2− 𝛼( 𝐱,𝑡 𝑛 +1 ) ) , 

(2.6) 

where 𝜔 𝑛 +1 
𝑗 

= ( 𝑗 + 1) (1− 𝛼( 𝐱,𝑡 𝑛 +1 )) − 𝑗 (1− 𝛼( 𝐱,𝑡 
𝑛 +1 )) , ( 𝑗 = 0 , 1 , 2 , … , 𝑀) . By sub- 

stituting Eqs. (2.4) and (2.6) in (2.3) the following relation at ( 𝑛 + 1) -th 
time level, for 𝑛 = 1 , 2 , … , 𝑀 − 1 is obtained: 

𝛽1 
3 𝑢 𝑛 +1 − 4 𝑢 𝑛 + 𝑢 𝑛 −1 

2 𝜏

+ 𝛽2 
𝜏− 𝛼( 𝐱,𝑡 

𝑛 +1 ) 

Γ(2 − 𝛼( 𝐱, 𝑡 𝑛 +1 )) 

[ 

𝑢 𝑛 +1 − 

𝑛 −1 ∑
𝑗=0 

( 𝜔 𝑛 +1 
𝑗 

− 𝜔 𝑛 +1 
𝑗+1 ) 𝑢 

𝑛 − 𝑗 − 𝜔 𝑛 +1 
𝑛 

𝑢 0 

] 

= −( 𝑣 𝑥 , 𝑣 𝑦 ) . ∇ 𝑢 𝑛 +1 + 𝐷Δ𝑢 𝑛 +1 + 𝜓 𝑛 +1 . 

By rearranging the above relation, the following equation is obtained: [3 
2 
𝛽1 + 𝛽2 𝜇( 𝐱, 𝑡 𝑛 +1 ) 

]
𝑢 𝑛 +1 − 𝜏𝐷Δ𝑢 𝑛 +1 + 𝜏( 𝑣 𝑥 , 𝑣 𝑦 ) . ∇ 𝑢 𝑛 +1 

= 𝛽2 𝜇( 𝐱, 𝑡 𝑛 +1 ) 
𝑛 −1 ∑
𝑗=0 

( 𝜔 𝑛 +1 
𝑗 

− 𝜔 𝑛 +1 
𝑗+1 ) 𝑢 

𝑛 − 𝑗 − 𝛽2 𝜇( 𝐱, 𝑡 𝑛 +1 ) 𝜔 𝑛 +1 𝑛 
𝑢 0 

+2 𝛽1 𝑢 𝑛 − 

1 
2 
𝛽1 𝑢 

𝑛 −1 + 𝜏𝜓 𝑛 +1 , 𝑛 = 1 , 2 , … , 𝑀 − 1 , (2.7) 

where 𝜇( 𝐱, 𝑡 𝑛 +1 ) = 

𝜏1− 𝛼( 𝐱,𝑡 
𝑛 +1 ) 

Γ(2− 𝛼( 𝐱,𝑡 𝑛 +1 )) . 
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